Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 560 vs Geforce GTX 760

Intro

The GeForce GTX 560 makes use of a 40 nm design. nVidia has clocked the core frequency at 810 MHz. The GDDR5 memory works at a frequency of 1001 MHz on this card. It features 336 SPUs along with 56 TAUs and 32 Rasterization Operator Units.

Compare all of that to the Geforce GTX 760, which comes with a clock speed of 980 MHz and a GDDR5 memory frequency of 1502 MHz. It also makes use of a 256-bit bus, and uses a 28 nm design. It is comprised of 1152 SPUs, 96 Texture Address Units, and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
Geforce GTX 760 170 Watts
Difference: 20 Watts (13%)

Memory Bandwidth

The Geforce GTX 760 should in theory be much faster than the GeForce GTX 560 overall. (explain)

Geforce GTX 760 192256 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 64128 (50%)

Texel Rate

The Geforce GTX 760 is quite a bit (about 107%) faster with regards to AF than the GeForce GTX 560. (explain)

Geforce GTX 760 94080 Mtexels/sec
GeForce GTX 560 45360 Mtexels/sec
Difference: 48720 (107%)

Pixel Rate

If using high levels of AA is important to you, then the Geforce GTX 760 is a better choice, by far. (explain)

Geforce GTX 760 31360 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 5440 (21%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 560

Amazon.com

Geforce GTX 760

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 560 Geforce GTX 760
Manufacturer nVidia nVidia
Year May 2011 June 2013
Code Name GF114 GK104
Memory 1024 MB 2048 MB
Core Speed 810 MHz 980 MHz
Memory Speed 4004 MHz 6008 MHz
Power (Max TDP) 150 watts 170 watts
Bandwidth 128128 MB/sec 192256 MB/sec
Texel Rate 45360 Mtexels/sec 94080 Mtexels/sec
Pixel Rate 25920 Mpixels/sec 31360 Mpixels/sec
Unified Shaders 336 1152
Texture Mapping Units 56 96
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 1950 million 3540 million
Bus PCIe 2.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the max amount of data (measured in MB per second) that can be transferred past the external memory interface within a second. It is calculated by multiplying the bus width by its memory speed. If it uses DDR type RAM, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed in one second. This is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly write to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]