Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 560 vs Geforce GTX 760

Intro

The GeForce GTX 560 uses a 40 nm design. nVidia has set the core speed at 810 MHz. The GDDR5 RAM works at a frequency of 1001 MHz on this particular model. It features 336 SPUs as well as 56 Texture Address Units and 32 ROPs.

Compare all of that to the Geforce GTX 760, which has GPU clock speed of 980 MHz, and 2048 MB of GDDR5 RAM set to run at 1502 MHz through a 256-bit bus. It also is comprised of 1152 SPUs, 96 Texture Address Units, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
Geforce GTX 760 170 Watts
Difference: 20 Watts (13%)

Memory Bandwidth

The Geforce GTX 760 should in theory perform a lot faster than the GeForce GTX 560 overall. (explain)

Geforce GTX 760 192256 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 64128 (50%)

Texel Rate

The Geforce GTX 760 will be a lot (about 107%) faster with regards to AF than the GeForce GTX 560. (explain)

Geforce GTX 760 94080 Mtexels/sec
GeForce GTX 560 45360 Mtexels/sec
Difference: 48720 (107%)

Pixel Rate

The Geforce GTX 760 should be a lot (more or less 21%) more effective at AA than the GeForce GTX 560, and will be able to handle higher screen resolutions better. (explain)

Geforce GTX 760 31360 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 5440 (21%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 560

Amazon.com

Geforce GTX 760

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 560 Geforce GTX 760
Manufacturer nVidia nVidia
Year May 2011 June 2013
Code Name GF114 GK104
Fab Process 40 nm 28 nm
Bus PCIe 2.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 810 MHz 980 MHz
Shader Speed 1600 MHz 980 MHz
Memory Speed 1001 MHz (4004 MHz effective) 1502 MHz (6008 MHz effective)
Unified Shaders 336 1152
Texture Mapping Units 56 96
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 150 watts 170 watts
Shader Model 5.0 5.0
Bandwidth 128128 MB/sec 192256 MB/sec
Texel Rate 45360 Mtexels/sec 94080 Mtexels/sec
Pixel Rate 25920 Mpixels/sec 31360 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (counted in megabytes per second) that can be moved over the external memory interface within a second. It is worked out by multiplying the interface width by the speed of its memory. If the card has DDR RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to the local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree