Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 760 vs Geforce GTX 770

Intro

The Geforce GTX 760 features a GPU core speed of 980 MHz, and the 2048 MB of GDDR5 RAM runs at 1502 MHz through a 256-bit bus. It also features 1152 Stream Processors, 96 Texture Address Units, and 32 Raster Operation Units.

Compare that to the Geforce GTX 770, which uses a 28 nm design. nVidia has clocked the core speed at 1046 MHz. The GDDR5 memory is set to run at a frequency of 1753 MHz on this card. It features 1536 SPUs along with 128 Texture Address Units and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Geforce GTX 760 170 Watts
Geforce GTX 770 230 Watts
Difference: 60 Watts (35%)

Memory Bandwidth

Theoretically speaking, the Geforce GTX 770 will be 17% faster than the Geforce GTX 760 in general, because of its higher bandwidth. (explain)

Geforce GTX 770 224384 MB/sec
Geforce GTX 760 192256 MB/sec
Difference: 32128 (17%)

Texel Rate

The Geforce GTX 770 is quite a bit (more or less 42%) better at anisotropic filtering than the Geforce GTX 760. (explain)

Geforce GTX 770 133888 Mtexels/sec
Geforce GTX 760 94080 Mtexels/sec
Difference: 39808 (42%)

Pixel Rate

If using a high screen resolution is important to you, then the Geforce GTX 770 is the winner, but only just. (explain)

Geforce GTX 770 33472 Mpixels/sec
Geforce GTX 760 31360 Mpixels/sec
Difference: 2112 (7%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 760

Amazon.com

Geforce GTX 770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 760 Geforce GTX 770
Manufacturer nVidia nVidia
Year June 2013 May 2013
Code Name GK104 GK104
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 980 MHz 1046 MHz
Shader Speed 980 MHz 1046 MHz
Memory Speed 1502 MHz (6008 MHz effective) 1753 MHz (7012 MHz effective)
Unified Shaders 1152 1536
Texture Mapping Units 96 128
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.0
OpenGL Version OpenGL 4.3 OpenGL 4.3
Power (Max TDP) 170 watts 230 watts
Shader Model 5.0 5.0
Bandwidth 192256 MB/sec 224384 MB/sec
Texel Rate 94080 Mtexels/sec 133888 Mtexels/sec
Pixel Rate 31360 Mpixels/sec 33472 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be moved past the external memory interface within a second. It is calculated by multiplying the card's bus width by the speed of its memory. In the case of DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly write to its local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree