Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

A Question

Compare any two graphics cards:
VS

Radeon HD 6750 1GB vs Radeon HD 7790

Intro

The Radeon HD 6750 1GB makes use of a 40 nm design. AMD has clocked the core speed at 725 MHz. The GDDR5 memory is set to run at a frequency of 1000 MHz on this card. It features 720 SPUs as well as 36 Texture Address Units and 16 ROPs.

Compare all that to the Radeon HD 7790, which features a GPU core clock speed of 1000 MHz, and 1024 MB of GDDR5 RAM set to run at 1500 MHz through a 128-bit bus. It also features 896 Stream Processors, 56 Texture Address Units, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7790 85 Watts
Radeon HD 6750 1GB 86 Watts
Difference: 1 Watts (1%)

Memory Bandwidth

As far as performance goes, the Radeon HD 7790 should theoretically be much better than the Radeon HD 6750 1GB overall. (explain)

Radeon HD 7790 96000 MB/sec
Radeon HD 6750 1GB 64000 MB/sec
Difference: 32000 (50%)

Texel Rate

The Radeon HD 7790 is much (more or less 115%) faster with regards to AF than the Radeon HD 6750 1GB. (explain)

Radeon HD 7790 56000 Mtexels/sec
Radeon HD 6750 1GB 26100 Mtexels/sec
Difference: 29900 (115%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the Radeon HD 7790 is the winner, and very much so. (explain)

Radeon HD 7790 16000 Mpixels/sec
Radeon HD 6750 1GB 11600 Mpixels/sec
Difference: 4400 (38%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 6750 1GB

Amazon.com

Radeon HD 7790

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 6750 1GB Radeon HD 7790
Manufacturer AMD AMD
Year January 2011 March 2013
Code Name Juniper Pro Bonaire XT
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 725 MHz 1000 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 4000 MHz 6000 MHz
Unified Shaders 720 896
Texture Mapping Units 36 56
Render Output Units 16 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 86 watts 85 watts
Shader Model 5.0 5.0
Bandwidth 64000 MB/sec 96000 MB/sec
Texel Rate 26100 Mtexels/sec 56000 Mtexels/sec
Pixel Rate 11600 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of MB per second) that can be moved over the external memory interface in a second. It is calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to the local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]