Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 6750 1GB vs Radeon HD 7790

Intro

The Radeon HD 6750 1GB features a clock frequency of 725 MHz and a GDDR5 memory frequency of 1000 MHz. It also uses a 128-bit bus, and uses a 40 nm design. It is made up of 720 SPUs, 36 Texture Address Units, and 16 ROPs.

Compare all that to the Radeon HD 7790, which features a core clock speed of 1000 MHz and a GDDR5 memory speed of 1500 MHz. It also features a 128-bit memory bus, and uses a 28 nm design. It features 896 SPUs, 56 TAUs, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7790 85 Watts
Radeon HD 6750 1GB 86 Watts
Difference: 1 Watts (1%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7790 will be 50% faster than the Radeon HD 6750 1GB overall, because of its greater bandwidth. (explain)

Radeon HD 7790 96000 MB/sec
Radeon HD 6750 1GB 64000 MB/sec
Difference: 32000 (50%)

Texel Rate

The Radeon HD 7790 is quite a bit (approximately 115%) better at texture filtering than the Radeon HD 6750 1GB. (explain)

Radeon HD 7790 56000 Mtexels/sec
Radeon HD 6750 1GB 26100 Mtexels/sec
Difference: 29900 (115%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon HD 7790 is a better choice, by a large margin. (explain)

Radeon HD 7790 16000 Mpixels/sec
Radeon HD 6750 1GB 11600 Mpixels/sec
Difference: 4400 (38%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 6750 1GB

Amazon.com

Radeon HD 7790

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 6750 1GB Radeon HD 7790
Manufacturer AMD AMD
Year January 2011 March 2013
Code Name Juniper Pro Bonaire XT
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 725 MHz 1000 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1000 MHz (4000 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 720 896
Texture Mapping Units 36 56
Render Output Units 16 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 86 watts 85 watts
Shader Model 5.0 5.0
Bandwidth 64000 MB/sec 96000 MB/sec
Texel Rate 26100 Mtexels/sec 56000 Mtexels/sec
Pixel Rate 11600 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in MB per second) that can be transported over the external memory interface within a second. The number is calculated by multiplying the interface width by its memory speed. If it uses DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This is worked out by multiplying the total amount of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree