Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 650 Ti vs Radeon HD 7790

Intro

The GeForce GTX 650 Ti comes with a core clock speed of 928 MHz and a GDDR5 memory speed of 1350 MHz. It also makes use of a 128-bit memory bus, and uses a 28 nm design. It is comprised of 768 SPUs, 64 TAUs, and 16 Raster Operation Units.

Compare all that to the Radeon HD 7790, which comes with a core clock speed of 1000 MHz and a GDDR5 memory speed of 1500 MHz. It also features a 128-bit bus, and uses a 28 nm design. It features 896 SPUs, 56 TAUs, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7790 85 Watts
GeForce GTX 650 Ti 110 Watts
Difference: 25 Watts (29%)

Memory Bandwidth

As far as performance goes, the Radeon HD 7790 should theoretically be a small bit superior to the GeForce GTX 650 Ti overall. (explain)

Radeon HD 7790 96000 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 9600 (11%)

Texel Rate

The GeForce GTX 650 Ti should be a bit (about 6%) better at AF than the Radeon HD 7790. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
Radeon HD 7790 56000 Mtexels/sec
Difference: 3392 (6%)

Pixel Rate

The Radeon HD 7790 will be a little bit (about 8%) more effective at full screen anti-aliasing than the GeForce GTX 650 Ti, and also will be able to handle higher resolutions while still performing well. (explain)

Radeon HD 7790 16000 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 1152 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 650 Ti

Amazon.com

Radeon HD 7790

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 650 Ti Radeon HD 7790
Manufacturer nVidia AMD
Year October 2012 March 2013
Code Name GK106 Bonaire XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 928 MHz 1000 MHz
Shader Speed 928 MHz (N/A) MHz
Memory Speed 1350 MHz (5400 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 768 896
Texture Mapping Units 64 56
Render Output Units 16 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11.0 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.3
Power (Max TDP) 110 watts 85 watts
Shader Model 5.0 5.0
Bandwidth 86400 MB/sec 96000 MB/sec
Texel Rate 59392 Mtexels/sec 56000 Mtexels/sec
Pixel Rate 14848 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in megabytes per second) that can be moved over the external memory interface within a second. It is worked out by multiplying the interface width by its memory clock speed. If it uses DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This number is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on quite a few other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree