Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 285 1GB vs Radeon HD 4670 512MB

Intro

The GeForce GTX 285 1GB uses a 55 nm design. nVidia has clocked the core speed at 648 MHz. The GDDR3 memory works at a frequency of 1242 MHz on this particular model. It features 240 SPUs along with 80 Texture Address Units and 32 Rasterization Operator Units.

Compare that to the Radeon HD 4670 512MB, which uses a 55 nm design. AMD has clocked the core speed at 750 MHz. The GDDR4/GDDR3/DDR3/DDR2 memory works at a speed of 1000 MHz on this particular card. It features 320(64x5) SPUs along with 32 TAUs and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4670 512MB 70 Watts
GeForce GTX 285 1GB 204 Watts
Difference: 134 Watts (191%)

Memory Bandwidth

In theory, the GeForce GTX 285 1GB should perform quite a bit faster than the Radeon HD 4670 512MB in general. (explain)

GeForce GTX 285 1GB 158976 MB/sec
Radeon HD 4670 512MB 32000 MB/sec
Difference: 126976 (397%)

Texel Rate

The GeForce GTX 285 1GB is quite a bit (more or less 116%) more effective at texture filtering than the Radeon HD 4670 512MB. (explain)

GeForce GTX 285 1GB 51840 Mtexels/sec
Radeon HD 4670 512MB 24000 Mtexels/sec
Difference: 27840 (116%)

Pixel Rate

The GeForce GTX 285 1GB is much (approximately 246%) better at anti-aliasing than the Radeon HD 4670 512MB, and should be able to handle higher screen resolutions without losing too much performance. (explain)

GeForce GTX 285 1GB 20736 Mpixels/sec
Radeon HD 4670 512MB 6000 Mpixels/sec
Difference: 14736 (246%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 285 1GB

Amazon.com

Radeon HD 4670 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 285 1GB Radeon HD 4670 512MB
Manufacturer nVidia AMD
Year January 15, 2009 Sep 10, 2008
Code Name G200b RV730 XT
Memory 1024 MB 512 MB
Core Speed 648 MHz 750 MHz
Memory Speed 2484 MHz 2000 MHz
Power (Max TDP) 204 watts 70 watts
Bandwidth 158976 MB/sec 32000 MB/sec
Texel Rate 51840 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 20736 Mpixels/sec 6000 Mpixels/sec
Unified Shaders 240 320(64x5)
Texture Mapping Units 80 32
Render Output Units 32 8
Bus Type GDDR3 GDDR4/GDDR3/DDR3/DDR2
Bus Width 512-bit 128-bit
Fab Process 55 nm 55 nm
Transistors 1400 million 514 million
Bus PCIe x16 2.0 PCIe 2.0 x16, AGP 8x
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.1 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of MB per second) that can be transferred past the external memory interface in one second. The number is calculated by multiplying the interface width by its memory speed. If the card has DDR RAM, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is calculated by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly write to its local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]