Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 285 1GB vs Radeon HD 4670 512MB


The GeForce GTX 285 1GB has a clock frequency of 648 MHz and a GDDR3 memory speed of 1242 MHz. It also makes use of a 512-bit bus, and makes use of a 55 nm design. It is comprised of 240 SPUs, 80 Texture Address Units, and 32 Raster Operation Units.

Compare all of that to the Radeon HD 4670 512MB, which features clock speeds of 750 MHz on the GPU, and 1000 MHz on the 512 MB of GDDR4/GDDR3/DDR3/DDR2 RAM. It features 320(64x5) SPUs as well as 32 Texture Address Units and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4670 512MB 70 Watts
GeForce GTX 285 1GB 204 Watts
Difference: 134 Watts (191%)

Memory Bandwidth

Performance-wise, the GeForce GTX 285 1GB should in theory be a lot superior to the Radeon HD 4670 512MB in general. (explain)

GeForce GTX 285 1GB 158976 MB/sec
Radeon HD 4670 512MB 32000 MB/sec
Difference: 126976 (397%)

Texel Rate

The GeForce GTX 285 1GB is much (about 116%) better at texture filtering than the Radeon HD 4670 512MB. (explain)

GeForce GTX 285 1GB 51840 Mtexels/sec
Radeon HD 4670 512MB 24000 Mtexels/sec
Difference: 27840 (116%)

Pixel Rate

The GeForce GTX 285 1GB should be much (approximately 246%) faster with regards to anti-aliasing than the Radeon HD 4670 512MB, and also able to handle higher screen resolutions without slowing down too much. (explain)

GeForce GTX 285 1GB 20736 Mpixels/sec
Radeon HD 4670 512MB 6000 Mpixels/sec
Difference: 14736 (246%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 285 1GB

Radeon HD 4670 512MB

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 285 1GB Radeon HD 4670 512MB
Manufacturer nVidia AMD
Year January 15, 2009 Sep 10, 2008
Code Name G200b RV730 XT
Memory 1024 MB 512 MB
Core Speed 648 MHz 750 MHz
Memory Speed 2484 MHz 2000 MHz
Power (Max TDP) 204 watts 70 watts
Bandwidth 158976 MB/sec 32000 MB/sec
Texel Rate 51840 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 20736 Mpixels/sec 6000 Mpixels/sec
Unified Shaders 240 320(64x5)
Texture Mapping Units 80 32
Render Output Units 32 8
Bus Width 512-bit 128-bit
Fab Process 55 nm 55 nm
Transistors 1400 million 514 million
Bus PCIe x16 2.0 PCIe 2.0 x16, AGP 8x
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.1 OpenGL 3.0

Memory Bandwidth: Bandwidth is the max amount of data (in units of MB per second) that can be transferred over the external memory interface in a second. It is worked out by multiplying the card's interface width by its memory clock speed. If it uses DDR type RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This number is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly record to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield