Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 285 1GB vs Radeon HD 4670 512MB


The GeForce GTX 285 1GB makes use of a 55 nm design. nVidia has set the core speed at 648 MHz. The GDDR3 RAM is set to run at a frequency of 1242 MHz on this particular model. It features 240 SPUs along with 80 Texture Address Units and 32 ROPs.

Compare all that to the Radeon HD 4670 512MB, which features a GPU core clock speed of 750 MHz, and 512 MB of GDDR4/GDDR3/DDR3/DDR2 RAM set to run at 1000 MHz through a 128-bit bus. It also is made up of 320(64x5) Stream Processors, 32 Texture Address Units, and 8 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4670 512MB 70 Watts
GeForce GTX 285 1GB 204 Watts
Difference: 134 Watts (191%)

Memory Bandwidth

Theoretically, the GeForce GTX 285 1GB should perform quite a bit faster than the Radeon HD 4670 512MB overall. (explain)

GeForce GTX 285 1GB 158976 MB/sec
Radeon HD 4670 512MB 32000 MB/sec
Difference: 126976 (397%)

Texel Rate

The GeForce GTX 285 1GB will be quite a bit (about 116%) faster with regards to AF than the Radeon HD 4670 512MB. (explain)

GeForce GTX 285 1GB 51840 Mtexels/sec
Radeon HD 4670 512MB 24000 Mtexels/sec
Difference: 27840 (116%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GTX 285 1GB is the winner, by a large margin. (explain)

GeForce GTX 285 1GB 20736 Mpixels/sec
Radeon HD 4670 512MB 6000 Mpixels/sec
Difference: 14736 (246%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 285 1GB

Radeon HD 4670 512MB

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 285 1GB Radeon HD 4670 512MB
Manufacturer nVidia AMD
Year January 15, 2009 Sep 10, 2008
Code Name G200b RV730 XT
Memory 1024 MB 512 MB
Core Speed 648 MHz 750 MHz
Memory Speed 2484 MHz 2000 MHz
Power (Max TDP) 204 watts 70 watts
Bandwidth 158976 MB/sec 32000 MB/sec
Texel Rate 51840 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 20736 Mpixels/sec 6000 Mpixels/sec
Unified Shaders 240 320(64x5)
Texture Mapping Units 80 32
Render Output Units 32 8
Bus Width 512-bit 128-bit
Fab Process 55 nm 55 nm
Transistors 1400 million 514 million
Bus PCIe x16 2.0 PCIe 2.0 x16, AGP 8x
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.1 OpenGL 3.0

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of MB per second) that can be transferred past the external memory interface in one second. The number is worked out by multiplying the bus width by its memory clock speed. If it uses DDR RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This number is worked out by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield