Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX Titan vs Radeon HD 5870

Intro

The GeForce GTX Titan features a GPU core speed of 837 MHz, and the 6144 MB of GDDR5 RAM runs at 1502 MHz through a 384-bit bus. It also is comprised of 2688 SPUs, 224 Texture Address Units, and 48 Raster Operation Units.

Compare those specs to the Radeon HD 5870, which features GPU clock speed of 850 MHz, and 1024 MB of GDDR5 memory set to run at 1200 MHz through a 256-bit bus. It also is made up of 1600(320x5) SPUs, 80 Texture Address Units, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
GeForce GTX Titan 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

The GeForce GTX Titan should theoretically perform much faster than the Radeon HD 5870 in general. (explain)

GeForce GTX Titan 288384 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134784 (88%)

Texel Rate

The GeForce GTX Titan will be quite a bit (more or less 176%) better at AF than the Radeon HD 5870. (explain)

GeForce GTX Titan 187488 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 119488 (176%)

Pixel Rate

The GeForce GTX Titan will be much (more or less 48%) more effective at AA than the Radeon HD 5870, and able to handle higher screen resolutions more effectively. (explain)

GeForce GTX Titan 40176 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 12976 (48%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX Titan

Amazon.com

Other US-based stores

Radeon HD 5870

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX Titan Radeon HD 5870
Manufacturer nVidia ATi
Year February 2013 September 23, 2009
Code Name GK110 Cypress XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 6144 MB 1024 MB
Core Speed 837 MHz 850 MHz
Shader Speed 837 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 2688 1600(320x5)
Texture Mapping Units 224 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2
Power (Max TDP) 250 watts 188 watts
Shader Model 5.0 5.0
Bandwidth 288384 MB/sec 153600 MB/sec
Texel Rate 187488 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 40176 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (measured in megabytes per second) that can be transported across the external memory interface in one second. The number is worked out by multiplying the bus width by its memory clock speed. If it uses DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This number is worked out by multiplying the total texture units by the core speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree