Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

A Question

Compare any two graphics cards:
VS

GeForce GTX Titan vs Radeon HD 5870

Intro

The GeForce GTX Titan has a clock frequency of 837 MHz and a GDDR5 memory speed of 1502 MHz. It also makes use of a 384-bit bus, and uses a 28 nm design. It is comprised of 2688 SPUs, 224 TAUs, and 48 ROPs.

Compare those specs to the Radeon HD 5870, which comes with a core clock speed of 850 MHz and a GDDR5 memory frequency of 1200 MHz. It also features a 256-bit memory bus, and uses a 40 nm design. It is made up of 1600(320x5) SPUs, 80 TAUs, and 32 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
GeForce GTX Titan 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX Titan should perform a lot faster than the Radeon HD 5870 overall. (explain)

GeForce GTX Titan 288384 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134784 (88%)

Texel Rate

The GeForce GTX Titan should be a lot (about 176%) better at texture filtering than the Radeon HD 5870. (explain)

GeForce GTX Titan 187488 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 119488 (176%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX Titan is the winner, and very much so. (explain)

GeForce GTX Titan 40176 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 12976 (48%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX Titan

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX Titan Radeon HD 5870
Manufacturer nVidia AMD
Year February 2013 September 23, 2009
Code Name GK110 Cypress XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 6144 MB 1024 MB
Core Speed 837 MHz 850 MHz
Shader Speed 837 MHz (N/A) MHz
Memory Speed 6008 MHz 4800 MHz
Unified Shaders 2688 1600(320x5)
Texture Mapping Units 224 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2
Power (Max TDP) 250 watts 188 watts
Shader Model 5.0 5.0
Bandwidth 288384 MB/sec 153600 MB/sec
Texel Rate 187488 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 40176 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (measured in MB per second) that can be moved past the external memory interface in a second. It's calculated by multiplying the card's bus width by the speed of its memory. In the case of DDR type RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total amount of texture units by the core speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly record to the local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]