Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX Titan vs Radeon HD 5870

Intro

The GeForce GTX Titan makes use of a 28 nm design. nVidia has clocked the core frequency at 837 MHz. The GDDR5 memory runs at a speed of 1502 MHz on this particular model. It features 2688 SPUs as well as 224 TAUs and 48 ROPs.

Compare those specifications to the Radeon HD 5870, which has a core clock speed of 850 MHz and a GDDR5 memory frequency of 1200 MHz. It also features a 256-bit memory bus, and makes use of a 40 nm design. It features 1600(320x5) SPUs, 80 Texture Address Units, and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
GeForce GTX Titan 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

Performance-wise, the GeForce GTX Titan should theoretically be a lot superior to the Radeon HD 5870 overall. (explain)

GeForce GTX Titan 288384 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134784 (88%)

Texel Rate

The GeForce GTX Titan is quite a bit (about 176%) better at texture filtering than the Radeon HD 5870. (explain)

GeForce GTX Titan 187488 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 119488 (176%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce GTX Titan is the winner, by far. (explain)

GeForce GTX Titan 40176 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 12976 (48%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX Titan

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX Titan Radeon HD 5870
Manufacturer nVidia AMD
Year February 2013 September 23, 2009
Code Name GK110 Cypress XT
Memory 6144 MB 1024 MB
Core Speed 837 MHz 850 MHz
Memory Speed 6008 MHz 4800 MHz
Power (Max TDP) 250 watts 188 watts
Bandwidth 288384 MB/sec 153600 MB/sec
Texel Rate 187488 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 40176 Mpixels/sec 27200 Mpixels/sec
Unified Shaders 2688 1600(320x5)
Texture Mapping Units 224 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
Fab Process 28 nm 40 nm
Transistors 7080 million 2154 million
Bus PCIe 3.0 x16 PCIe 2.1 x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the max amount of data (measured in MB per second) that can be transported past the external memory interface in one second. The number is worked out by multiplying the card's interface width by its memory speed. If it uses DDR type memory, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]