Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX Titan vs Radeon HD 5870

Intro

The GeForce GTX Titan makes use of a 28 nm design. nVidia has set the core frequency at 837 MHz. The GDDR5 memory works at a frequency of 1502 MHz on this model. It features 2688 SPUs as well as 224 TAUs and 48 Rasterization Operator Units.

Compare that to the Radeon HD 5870, which has clock speeds of 850 MHz on the GPU, and 1200 MHz on the 1024 MB of GDDR5 memory. It features 1600(320x5) SPUs along with 80 Texture Address Units and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
GeForce GTX Titan 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

Theoretically, the GeForce GTX Titan should perform a lot faster than the Radeon HD 5870 in general. (explain)

GeForce GTX Titan 288384 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134784 (88%)

Texel Rate

The GeForce GTX Titan is quite a bit (more or less 176%) faster with regards to texture filtering than the Radeon HD 5870. (explain)

GeForce GTX Titan 187488 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 119488 (176%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GTX Titan is superior to the Radeon HD 5870, by a large margin. (explain)

GeForce GTX Titan 40176 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 12976 (48%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX Titan

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX Titan Radeon HD 5870
Manufacturer nVidia AMD
Year February 2013 September 23, 2009
Code Name GK110 Cypress XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 6144 MB 1024 MB
Core Speed 837 MHz 850 MHz
Shader Speed 837 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 2688 1600(320x5)
Texture Mapping Units 224 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2
Power (Max TDP) 250 watts 188 watts
Shader Model 5.0 5.0
Bandwidth 288384 MB/sec 153600 MB/sec
Texel Rate 187488 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 40176 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be transported past the external memory interface within a second. It is worked out by multiplying the card's interface width by its memory speed. If it uses DDR memory, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total number of texture units by the core clock speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly write to the local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree