Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX Titan vs Radeon HD 5870

Intro

The GeForce GTX Titan has a GPU core clock speed of 837 MHz, and the 6144 MB of GDDR5 memory runs at 1502 MHz through a 384-bit bus. It also is made up of 2688 SPUs, 224 Texture Address Units, and 48 Raster Operation Units.

Compare those specs to the Radeon HD 5870, which makes use of a 40 nm design. AMD has clocked the core speed at 850 MHz. The GDDR5 memory works at a frequency of 1200 MHz on this specific card. It features 1600(320x5) SPUs as well as 80 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
GeForce GTX Titan 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX Titan will be 88% quicker than the Radeon HD 5870 overall, due to its higher bandwidth. (explain)

GeForce GTX Titan 288384 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134784 (88%)

Texel Rate

The GeForce GTX Titan is a lot (about 176%) better at anisotropic filtering than the Radeon HD 5870. (explain)

GeForce GTX Titan 187488 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 119488 (176%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce GTX Titan is the winner, and very much so. (explain)

GeForce GTX Titan 40176 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 12976 (48%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX Titan

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX Titan Radeon HD 5870
Manufacturer nVidia AMD
Year February 2013 September 23, 2009
Code Name GK110 Cypress XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 6144 MB 1024 MB
Core Speed 837 MHz 850 MHz
Shader Speed 837 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 2688 1600(320x5)
Texture Mapping Units 224 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2
Power (Max TDP) 250 watts 188 watts
Shader Model 5.0 5.0
Bandwidth 288384 MB/sec 153600 MB/sec
Texel Rate 187488 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 40176 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (counted in megabytes per second) that can be transported past the external memory interface in one second. The number is worked out by multiplying the card's bus width by its memory clock speed. In the case of DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This is calculated by multiplying the total amount of texture units by the core speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly write to the local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing