Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 285 1GB vs Radeon HD 4890 1GB


The GeForce GTX 285 1GB features clock speeds of 648 MHz on the GPU, and 1242 MHz on the 1024 MB of GDDR3 RAM. It features 240 SPUs as well as 80 Texture Address Units and 32 Rasterization Operator Units.

Compare all that to the Radeon HD 4890 1GB, which features a core clock frequency of 1000 MHz and a GDDR5 memory frequency of 975 MHz. It also makes use of a 256-bit memory bus, and makes use of a 55 nm design. It is made up of 800(160x5) SPUs, 40 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4890 1GB 190 Watts
GeForce GTX 285 1GB 204 Watts
Difference: 14 Watts (7%)

Memory Bandwidth

Performance-wise, the GeForce GTX 285 1GB should in theory be much superior to the Radeon HD 4890 1GB in general. (explain)

GeForce GTX 285 1GB 158976 MB/sec
Radeon HD 4890 1GB 124800 MB/sec
Difference: 34176 (27%)

Texel Rate

The GeForce GTX 285 1GB should be quite a bit (approximately 30%) more effective at anisotropic filtering than the Radeon HD 4890 1GB. (explain)

GeForce GTX 285 1GB 51840 Mtexels/sec
Radeon HD 4890 1GB 40000 Mtexels/sec
Difference: 11840 (30%)

Pixel Rate

The GeForce GTX 285 1GB should be much (more or less 30%) more effective at FSAA than the Radeon HD 4890 1GB, and should be capable of handling higher resolutions while still performing well. (explain)

GeForce GTX 285 1GB 20736 Mpixels/sec
Radeon HD 4890 1GB 16000 Mpixels/sec
Difference: 4736 (30%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 285 1GB

Radeon HD 4890 1GB

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 285 1GB Radeon HD 4890 1GB
Manufacturer nVidia AMD
Year January 15, 2009 Apr 2, 2009
Code Name G200b RV790 XT
Memory 1024 MB 1024 MB
Core Speed 648 MHz 1000 MHz
Memory Speed 2484 MHz 3900 MHz
Power (Max TDP) 204 watts 190 watts
Bandwidth 158976 MB/sec 124800 MB/sec
Texel Rate 51840 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 20736 Mpixels/sec 16000 Mpixels/sec
Unified Shaders 240 800(160x5)
Texture Mapping Units 80 40
Render Output Units 32 16
Bus Type GDDR3 GDDR5
Bus Width 512-bit 256-bit
Fab Process 55 nm 55 nm
Transistors 1400 million 959 million
Bus PCIe x16 2.0 PCIe 2.0 x16
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.1 OpenGL 3.0

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in MB per second) that can be transported past the external memory interface in one second. It's calculated by multiplying the interface width by its memory clock speed. If the card has DDR type RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This number is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield