Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 570 vs GeForce GTX 650 Ti 2GB


The GeForce GTX 570 makes use of a 40 nm design. nVidia has clocked the core speed at 732 MHz. The GDDR5 memory runs at a frequency of 950 MHz on this specific model. It features 480 SPUs as well as 60 Texture Address Units and 40 ROPs.

Compare those specifications to the GeForce GTX 650 Ti 2GB, which makes use of a 28 nm design. nVidia has clocked the core frequency at 928 MHz. The GDDR5 RAM is set to run at a frequency of 1350 MHz on this particular model. It features 768 SPUs as well as 64 Texture Address Units and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 2GB 110 Watts
GeForce GTX 570 219 Watts
Difference: 109 Watts (99%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 570 should perform quite a bit faster than the GeForce GTX 650 Ti 2GB in general. (explain)

GeForce GTX 570 152000 MB/sec
GeForce GTX 650 Ti 2GB 86400 MB/sec
Difference: 65600 (76%)

Texel Rate

The GeForce GTX 650 Ti 2GB is quite a bit (about 35%) better at anisotropic filtering than the GeForce GTX 570. (explain)

GeForce GTX 650 Ti 2GB 59392 Mtexels/sec
GeForce GTX 570 43920 Mtexels/sec
Difference: 15472 (35%)

Pixel Rate

The GeForce GTX 570 is quite a bit (about 97%) faster with regards to anti-aliasing than the GeForce GTX 650 Ti 2GB, and capable of handling higher screen resolutions better. (explain)

GeForce GTX 570 29280 Mpixels/sec
GeForce GTX 650 Ti 2GB 14848 Mpixels/sec
Difference: 14432 (97%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 570

GeForce GTX 650 Ti 2GB

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 570 GeForce GTX 650 Ti 2GB
Manufacturer nVidia nVidia
Year December 2010 October 2012
Code Name GF110 GK106
Memory 1280 MB 2048 MB
Core Speed 732 MHz 928 MHz
Memory Speed 3800 MHz 5400 MHz
Power (Max TDP) 219 watts 110 watts
Bandwidth 152000 MB/sec 86400 MB/sec
Texel Rate 43920 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 480 768
Texture Mapping Units 60 64
Render Output Units 40 16
Bus Type GDDR5 GDDR5
Bus Width 320-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 2540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the largest amount of data (counted in MB per second) that can be moved across the external memory interface within a second. It is calculated by multiplying the bus width by its memory clock speed. In the case of DDR RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield