Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 570 vs GeForce GTX 650 Ti 2GB

Intro

The GeForce GTX 570 comes with a clock frequency of 732 MHz and a GDDR5 memory speed of 950 MHz. It also uses a 320-bit bus, and makes use of a 40 nm design. It is made up of 480 SPUs, 60 Texture Address Units, and 40 ROPs.

Compare those specs to the GeForce GTX 650 Ti 2GB, which features a GPU core clock speed of 928 MHz, and 2048 MB of GDDR5 RAM set to run at 1350 MHz through a 128-bit bus. It also is comprised of 768 Stream Processors, 64 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 2GB 110 Watts
GeForce GTX 570 219 Watts
Difference: 109 Watts (99%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 570 should in theory be quite a bit better than the GeForce GTX 650 Ti 2GB in general. (explain)

GeForce GTX 570 152000 MB/sec
GeForce GTX 650 Ti 2GB 86400 MB/sec
Difference: 65600 (76%)

Texel Rate

The GeForce GTX 650 Ti 2GB is quite a bit (approximately 35%) better at AF than the GeForce GTX 570. (explain)

GeForce GTX 650 Ti 2GB 59392 Mtexels/sec
GeForce GTX 570 43920 Mtexels/sec
Difference: 15472 (35%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce GTX 570 is the winner, by a large margin. (explain)

GeForce GTX 570 29280 Mpixels/sec
GeForce GTX 650 Ti 2GB 14848 Mpixels/sec
Difference: 14432 (97%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 570

Amazon.com

GeForce GTX 650 Ti 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 570 GeForce GTX 650 Ti 2GB
Manufacturer nVidia nVidia
Year December 2010 October 2012
Code Name GF110 GK106
Memory 1280 MB 2048 MB
Core Speed 732 MHz 928 MHz
Memory Speed 3800 MHz 5400 MHz
Power (Max TDP) 219 watts 110 watts
Bandwidth 152000 MB/sec 86400 MB/sec
Texel Rate 43920 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 480 768
Texture Mapping Units 60 64
Render Output Units 40 16
Bus Type GDDR5 GDDR5
Bus Width 320-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 2540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of information (measured in megabytes per second) that can be transported past the external memory interface in one second. The number is calculated by multiplying the card's bus width by its memory clock speed. If the card has DDR RAM, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly write to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]