Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 650 Ti 2GB


Intro

The GeForce GT 640 DDR3 makes use of a 28 nm design. nVidia has clocked the core frequency at 900 MHz. The DDR3 memory works at a speed of 1782 MHz on this model. It features 384 SPUs along with 32 Texture Address Units and 16 Rasterization Operator Units.

Compare those specs to the GeForce GTX 650 Ti 2GB, which comes with core clock speeds of 928 MHz on the GPU, and 1350 MHz on the 2048 MB of GDDR5 memory. It features 768 SPUs along with 64 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 650 Ti 2GB 110 Watts
Difference: 45 Watts (69%)

Memory Bandwidth

Theoretically, the GeForce GTX 650 Ti 2GB should be much faster than the GeForce GT 640 DDR3 in general. (explain)

GeForce GTX 650 Ti 2GB 86400 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 29376 (52%)

Texel Rate

The GeForce GTX 650 Ti 2GB is a lot (more or less 106%) better at AF than the GeForce GT 640 DDR3. (explain)

GeForce GTX 650 Ti 2GB 59392 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 30592 (106%)

Pixel Rate

The GeForce GTX 650 Ti 2GB is a little bit (approximately 3%) more effective at AA than the GeForce GT 640 DDR3, and also will be capable of handling higher screen resolutions better. (explain)

GeForce GTX 650 Ti 2GB 14848 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 448 (3%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 640 DDR3

GeForce GTX 650 Ti 2GB

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 GeForce GTX 650 Ti 2GB
Manufacturer nVidia nVidia
Year June 2012 October 2012
Code Name GK107 GK106
Memory 2048 MB 2048 MB
Core Speed 900 MHz 928 MHz
Memory Speed 3564 MHz 5400 MHz
Power (Max TDP) 65 watts 110 watts
Bandwidth 57024 MB/sec 86400 MB/sec
Texel Rate 28800 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 384 768
Texture Mapping Units 32 64
Render Output Units 16 16
Bus Type DDR3 GDDR5
Bus Width 128-bit 128-bit
Fab Process 28 nm 28 nm
Transistors 1300 million 2540 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.0 DirectX 11.0
OpenGL Version OpenGL 4.2 OpenGL 4.3

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of MB per second) that can be moved over the external memory interface in a second. The number is calculated by multiplying the interface width by the speed of its memory. If the card has DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total texture units of the card by the core speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly write to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

GeForce GT 640 DDR3

GeForce GTX 650 Ti 2GB

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti-Spam by WP-SpamShield


[X]
[X]