Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GT 640 DDR3 vs GeForce GTX 650 Ti 2GB


The GeForce GT 640 DDR3 has a GPU core clock speed of 900 MHz, and the 2048 MB of DDR3 memory is set to run at 1782 MHz through a 128-bit bus. It also features 384 SPUs, 32 TAUs, and 16 Raster Operation Units.

Compare that to the GeForce GTX 650 Ti 2GB, which comes with clock speeds of 928 MHz on the GPU, and 1350 MHz on the 2048 MB of GDDR5 RAM. It features 768 SPUs as well as 64 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 650 Ti 2GB 110 Watts
Difference: 45 Watts (69%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 650 Ti 2GB is 52% faster than the GeForce GT 640 DDR3 in general, due to its higher data rate. (explain)

GeForce GTX 650 Ti 2GB 86400 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 29376 (52%)

Texel Rate

The GeForce GTX 650 Ti 2GB will be a lot (more or less 106%) more effective at anisotropic filtering than the GeForce GT 640 DDR3. (explain)

GeForce GTX 650 Ti 2GB 59392 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 30592 (106%)

Pixel Rate

The GeForce GTX 650 Ti 2GB is just a bit (approximately 3%) better at anti-aliasing than the GeForce GT 640 DDR3, and capable of handling higher screen resolutions better. (explain)

GeForce GTX 650 Ti 2GB 14848 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 448 (3%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 640 DDR3

GeForce GTX 650 Ti 2GB

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 GeForce GTX 650 Ti 2GB
Manufacturer nVidia nVidia
Year June 2012 October 2012
Code Name GK107 GK106
Memory 2048 MB 2048 MB
Core Speed 900 MHz 928 MHz
Memory Speed 3564 MHz 5400 MHz
Power (Max TDP) 65 watts 110 watts
Bandwidth 57024 MB/sec 86400 MB/sec
Texel Rate 28800 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 384 768
Texture Mapping Units 32 64
Render Output Units 16 16
Bus Type DDR3 GDDR5
Bus Width 128-bit 128-bit
Fab Process 28 nm 28 nm
Transistors 1300 million 2540 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.0 DirectX 11.0
OpenGL Version OpenGL 4.2 OpenGL 4.3

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of MB per second) that can be transferred across the external memory interface within a second. The number is calculated by multiplying the bus width by the speed of its memory. In the case of DDR memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield