Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs GeForce GTX 650 Ti

Intro

The GeForce 9500 GT DDR2 comes with clock speeds of 550 MHz on the GPU, and 500 MHz on the 256 MB of DDR2 memory. It features 32 SPUs as well as 16 TAUs and 8 ROPs.

Compare that to the GeForce GTX 650 Ti, which makes use of a 28 nm design. nVidia has clocked the core speed at 928 MHz. The GDDR5 RAM runs at a frequency of 1350 MHz on this specific model. It features 768 SPUs as well as 64 Texture Address Units and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
GeForce GTX 650 Ti 110 Watts
Difference: 60 Watts (120%)

Memory Bandwidth

Theoretically, the GeForce GTX 650 Ti should perform a lot faster than the GeForce 9500 GT DDR2 in general. (explain)

GeForce GTX 650 Ti 86400 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 70400 (440%)

Texel Rate

The GeForce GTX 650 Ti will be a lot (approximately 575%) better at anisotropic filtering than the GeForce 9500 GT DDR2. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 50592 (575%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce GTX 650 Ti is a better choice, by a large margin. (explain)

GeForce GTX 650 Ti 14848 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 10448 (237%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9500 GT DDR2

Amazon.com

GeForce GTX 650 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9500 GT DDR2 GeForce GTX 650 Ti
Manufacturer nVidia nVidia
Year July 2008 October 2012
Code Name G96a GK106
Memory 256 MB 1024 MB
Core Speed 550 MHz 928 MHz
Memory Speed 1000 MHz 5400 MHz
Power (Max TDP) 50 watts 110 watts
Bandwidth 16000 MB/sec 86400 MB/sec
Texel Rate 8800 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 32 768
Texture Mapping Units 16 64
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
Fab Process 65 nm 28 nm
Transistors 314 million 2540 million
Bus PCIe x16 2.0, PCI PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of data (measured in megabytes per second) that can be transferred over the external memory interface within a second. The number is worked out by multiplying the interface width by the speed of its memory. If the card has DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]