Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs GeForce GTX 650 Ti

Intro

The GeForce 9500 GT DDR2 features a clock frequency of 550 MHz and a DDR2 memory frequency of 500 MHz. It also features a 128-bit bus, and makes use of a 65 nm design. It is made up of 32 SPUs, 16 TAUs, and 8 Raster Operation Units.

Compare that to the GeForce GTX 650 Ti, which has GPU core speed of 928 MHz, and 1024 MB of GDDR5 memory set to run at 1350 MHz through a 128-bit bus. It also is comprised of 768 Stream Processors, 64 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
GeForce GTX 650 Ti 110 Watts
Difference: 60 Watts (120%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 650 Ti should perform quite a bit faster than the GeForce 9500 GT DDR2 in general. (explain)

GeForce GTX 650 Ti 86400 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 70400 (440%)

Texel Rate

The GeForce GTX 650 Ti should be a lot (about 575%) more effective at AF than the GeForce 9500 GT DDR2. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 50592 (575%)

Pixel Rate

The GeForce GTX 650 Ti is quite a bit (approximately 237%) more effective at FSAA than the GeForce 9500 GT DDR2, and should be able to handle higher resolutions without slowing down too much. (explain)

GeForce GTX 650 Ti 14848 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 10448 (237%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9500 GT DDR2

Amazon.com

GeForce GTX 650 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9500 GT DDR2 GeForce GTX 650 Ti
Manufacturer nVidia nVidia
Year July 2008 October 2012
Code Name G96a GK106
Memory 256 MB 1024 MB
Core Speed 550 MHz 928 MHz
Memory Speed 1000 MHz 5400 MHz
Power (Max TDP) 50 watts 110 watts
Bandwidth 16000 MB/sec 86400 MB/sec
Texel Rate 8800 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 32 768
Texture Mapping Units 16 64
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
Fab Process 65 nm 28 nm
Transistors 314 million 2540 million
Bus PCIe x16 2.0, PCI PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of data (counted in MB per second) that can be moved past the external memory interface in one second. The number is calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR type memory, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This number is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]