Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 650 Ti vs Radeon HD 7770

Intro

The GeForce GTX 650 Ti has core clock speeds of 928 MHz on the GPU, and 1350 MHz on the 1024 MB of GDDR5 memory. It features 768 SPUs along with 64 TAUs and 16 Rasterization Operator Units.

Compare those specifications to the Radeon HD 7770, which makes use of a 28 nm design. ATi has set the core speed at 1000 MHz. The GDDR5 RAM works at a frequency of 1125 MHz on this specific model. It features 640 SPUs along with 40 Texture Address Units and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7770 80 Watts
GeForce GTX 650 Ti 110 Watts
Difference: 30 Watts (38%)

Memory Bandwidth

Theoretically, the GeForce GTX 650 Ti should perform a bit faster than the Radeon HD 7770 in general. (explain)

GeForce GTX 650 Ti 86400 MB/sec
Radeon HD 7770 72000 MB/sec
Difference: 14400 (20%)

Texel Rate

The GeForce GTX 650 Ti will be a lot (more or less 48%) more effective at AF than the Radeon HD 7770. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
Radeon HD 7770 40000 Mtexels/sec
Difference: 19392 (48%)

Pixel Rate

If using a high resolution is important to you, then the Radeon HD 7770 is a better choice, though not by far. (explain)

Radeon HD 7770 16000 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 1152 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 650 Ti

Amazon.com

Other US-based stores

Radeon HD 7770

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 650 Ti Radeon HD 7770
Manufacturer nVidia ATi
Year October 2012 February 2012
Code Name GK106 Cape Verde XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 928 MHz 1000 MHz
Shader Speed 928 MHz (N/A) MHz
Memory Speed 1350 MHz (5400 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 768 640
Texture Mapping Units 64 40
Render Output Units 16 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11.1 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 110 watts 80 watts
Shader Model 5.0 5.0
Bandwidth 86400 MB/sec 72000 MB/sec
Texel Rate 59392 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 14848 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be moved over the external memory interface in a second. It is calculated by multiplying the bus width by the speed of its memory. If it uses DDR RAM, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed per second. This figure is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to its local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree