Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 650 Ti vs GeForce GTX 660 Ti

Intro

The GeForce GTX 650 Ti uses a 28 nm design. nVidia has set the core speed at 928 MHz. The GDDR5 memory is set to run at a frequency of 1350 MHz on this specific model. It features 768 SPUs along with 64 Texture Address Units and 16 ROPs.

Compare that to the GeForce GTX 660 Ti, which comes with a GPU core clock speed of 915 MHz, and 2048 MB of GDDR5 memory set to run at 1500 MHz through a 192-bit bus. It also features 1344 SPUs, 112 Texture Address Units, and 24 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 40 Watts (36%)

Memory Bandwidth

The GeForce GTX 660 Ti should theoretically perform a lot faster than the GeForce GTX 650 Ti overall. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 57600 (67%)

Texel Rate

The GeForce GTX 660 Ti is quite a bit (approximately 73%) better at texture filtering than the GeForce GTX 650 Ti. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce GTX 650 Ti 59392 Mtexels/sec
Difference: 43088 (73%)

Pixel Rate

The GeForce GTX 660 Ti should be much (approximately 48%) better at anti-aliasing than the GeForce GTX 650 Ti, and will be able to handle higher resolutions more effectively. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 7112 (48%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650 Ti

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 650 Ti GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year October 2012 August 2012
Code Name GK106 GK104
Memory 1024 MB 2048 MB
Core Speed 928 MHz 915 MHz
Memory Speed 5400 MHz 6000 MHz
Power (Max TDP) 110 watts 150 watts
Bandwidth 86400 MB/sec 144000 MB/sec
Texel Rate 59392 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 14848 Mpixels/sec 21960 Mpixels/sec
Unified Shaders 768 1344
Texture Mapping Units 64 112
Render Output Units 16 24
Bus Type GDDR5 GDDR5
Bus Width 128-bit 192-bit
Fab Process 28 nm 28 nm
Transistors 2540 million 3540 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.0 DirectX 11.0
OpenGL Version OpenGL 4.3 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of data (measured in megabytes per second) that can be transported across the external memory interface in a second. It's calculated by multiplying the interface width by its memory speed. If it uses DDR memory, the result should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed in one second. This is worked out by multiplying the total texture units by the core speed of the chip. The higher this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly record to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]