Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8800 GT 512MB vs GeForce GTX 650

Intro

The GeForce 8800 GT 512MB makes use of a 65 nm design. nVidia has set the core speed at 600 MHz. The GDDR3 RAM runs at a speed of 900 MHz on this particular model. It features 112 SPUs as well as 56 Texture Address Units and 16 ROPs.

Compare that to the GeForce GTX 650, which features core speeds of 1058 MHz on the GPU, and 1250 MHz on the 2048 MB of GDDR5 RAM. It features 384 SPUs along with 32 Texture Address Units and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 8800 GT 512MB 105 Watts
Difference: 41 Watts (64%)

Memory Bandwidth

The GeForce GTX 650 should in theory perform much faster than the GeForce 8800 GT 512MB in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8800 GT 512MB 57600 MB/sec
Difference: 22400 (39%)

Texel Rate

The GeForce GTX 650 is a small bit (about 1%) faster with regards to anisotropic filtering than the GeForce 8800 GT 512MB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8800 GT 512MB 33600 Mtexels/sec
Difference: 256 (1%)

Pixel Rate

The GeForce GTX 650 is quite a bit (more or less 76%) faster with regards to anti-aliasing than the GeForce 8800 GT 512MB, and will be able to handle higher resolutions without losing too much performance. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8800 GT 512MB 9600 Mpixels/sec
Difference: 7328 (76%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8800 GT 512MB

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8800 GT 512MB GeForce GTX 650
Manufacturer nVidia nVidia
Year Oct 2007 September 2012
Code Name G92 GK107
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 2048 MB
Core Speed 600 MHz 1058 MHz
Shader Speed 1500 MHz 1058 MHz
Memory Speed 900 MHz (1800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 105 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 80000 MB/sec
Texel Rate 33600 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of MB per second) that can be transferred past the external memory interface in one second. The number is calculated by multiplying the bus width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly record to its local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing