Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GT 512MB vs GeForce GTX 650

Intro

The GeForce 8800 GT 512MB has a GPU core speed of 600 MHz, and the 512 MB of GDDR3 RAM is set to run at 900 MHz through a 256-bit bus. It also is comprised of 112 SPUs, 56 TAUs, and 16 Raster Operation Units.

Compare that to the GeForce GTX 650, which features a clock speed of 1058 MHz and a GDDR5 memory frequency of 1250 MHz. It also makes use of a 128-bit bus, and makes use of a 28 nm design. It features 384 SPUs, 32 Texture Address Units, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 8800 GT 512MB 105 Watts
Difference: 41 Watts (64%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 650 should theoretically be quite a bit superior to the GeForce 8800 GT 512MB overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8800 GT 512MB 57600 MB/sec
Difference: 22400 (39%)

Texel Rate

The GeForce GTX 650 is a little bit (more or less 1%) faster with regards to texture filtering than the GeForce 8800 GT 512MB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8800 GT 512MB 33600 Mtexels/sec
Difference: 256 (1%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce GTX 650 is superior to the GeForce 8800 GT 512MB, by a large margin. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8800 GT 512MB 9600 Mpixels/sec
Difference: 7328 (76%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GT 512MB

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GT 512MB GeForce GTX 650
Manufacturer nVidia nVidia
Year Oct 2007 September 2012
Code Name G92 GK107
Memory 512 MB 2048 MB
Core Speed 600 MHz 1058 MHz
Memory Speed 1800 MHz 5000 MHz
Power (Max TDP) 105 watts 64 watts
Bandwidth 57600 MB/sec 80000 MB/sec
Texel Rate 33600 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65 nm 28 nm
Transistors 754 million 1300 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of data (measured in MB per second) that can be transported past the external memory interface within a second. The number is calculated by multiplying the card's interface width by the speed of its memory. If it uses DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed in one second. This number is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]