Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8800 GT 512MB vs GeForce GTX 650

Intro

The GeForce 8800 GT 512MB has a core clock frequency of 600 MHz and a GDDR3 memory speed of 900 MHz. It also uses a 256-bit memory bus, and uses a 65 nm design. It is comprised of 112 SPUs, 56 Texture Address Units, and 16 Raster Operation Units.

Compare those specifications to the GeForce GTX 650, which comes with a clock frequency of 1058 MHz and a GDDR5 memory frequency of 1250 MHz. It also features a 128-bit bus, and makes use of a 28 nm design. It is comprised of 384 SPUs, 32 Texture Address Units, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 8800 GT 512MB 105 Watts
Difference: 41 Watts (64%)

Memory Bandwidth

The GeForce GTX 650, in theory, should be a lot faster than the GeForce 8800 GT 512MB overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8800 GT 512MB 57600 MB/sec
Difference: 22400 (39%)

Texel Rate

The GeForce GTX 650 will be just a bit (approximately 1%) faster with regards to anisotropic filtering than the GeForce 8800 GT 512MB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8800 GT 512MB 33600 Mtexels/sec
Difference: 256 (1%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce GTX 650 is superior to the GeForce 8800 GT 512MB, by far. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8800 GT 512MB 9600 Mpixels/sec
Difference: 7328 (76%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8800 GT 512MB

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8800 GT 512MB GeForce GTX 650
Manufacturer nVidia nVidia
Year Oct 2007 September 2012
Code Name G92 GK107
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 2048 MB
Core Speed 600 MHz 1058 MHz
Shader Speed 1500 MHz 1058 MHz
Memory Speed 900 MHz (1800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 105 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 80000 MB/sec
Texel Rate 33600 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (measured in megabytes per second) that can be moved over the external memory interface in one second. The number is worked out by multiplying the bus width by the speed of its memory. If the card has DDR type memory, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly write to the local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing