Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8800 GT 1GB vs GeForce GTX 650

Intro

The GeForce 8800 GT 1GB makes use of a 65 nm design. nVidia has set the core frequency at 600 MHz. The GDDR3 RAM works at a frequency of 900 MHz on this model. It features 112 SPUs along with 56 Texture Address Units and 16 ROPs.

Compare those specs to the GeForce GTX 650, which comes with clock speeds of 1058 MHz on the GPU, and 1250 MHz on the 2048 MB of GDDR5 RAM. It features 384 SPUs along with 32 Texture Address Units and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 8800 GT 1GB 105 Watts
Difference: 41 Watts (64%)

Memory Bandwidth

The GeForce GTX 650, in theory, should be much faster than the GeForce 8800 GT 1GB in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8800 GT 1GB 57600 MB/sec
Difference: 22400 (39%)

Texel Rate

The GeForce GTX 650 should be a bit (about 1%) more effective at texture filtering than the GeForce 8800 GT 1GB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8800 GT 1GB 33600 Mtexels/sec
Difference: 256 (1%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GTX 650 is a better choice, by far. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8800 GT 1GB 9600 Mpixels/sec
Difference: 7328 (76%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8800 GT 1GB

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8800 GT 1GB GeForce GTX 650
Manufacturer nVidia nVidia
Year Dec 2007 September 2012
Code Name G92 GK107
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 600 MHz 1058 MHz
Shader Speed 1500 MHz 1058 MHz
Memory Speed 900 MHz (1800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 105 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 80000 MB/sec
Texel Rate 33600 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (counted in MB per second) that can be transferred past the external memory interface in a second. It is calculated by multiplying the card's interface width by its memory clock speed. If the card has DDR memory, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This figure is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing