Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GT 1GB vs GeForce GTX 650

Intro

The GeForce 8800 GT 1GB comes with a GPU clock speed of 600 MHz, and the 1024 MB of GDDR3 RAM is set to run at 900 MHz through a 256-bit bus. It also is comprised of 112 SPUs, 56 Texture Address Units, and 16 ROPs.

Compare those specs to the GeForce GTX 650, which features a core clock frequency of 1058 MHz and a GDDR5 memory frequency of 1250 MHz. It also features a 128-bit memory bus, and uses a 28 nm design. It features 384 SPUs, 32 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 8800 GT 1GB 105 Watts
Difference: 41 Watts (64%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 650 should in theory be much better than the GeForce 8800 GT 1GB in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8800 GT 1GB 57600 MB/sec
Difference: 22400 (39%)

Texel Rate

The GeForce GTX 650 is a bit (more or less 1%) better at texture filtering than the GeForce 8800 GT 1GB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8800 GT 1GB 33600 Mtexels/sec
Difference: 256 (1%)

Pixel Rate

The GeForce GTX 650 will be quite a bit (about 76%) better at AA than the GeForce 8800 GT 1GB, and will be capable of handling higher resolutions without losing too much performance. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8800 GT 1GB 9600 Mpixels/sec
Difference: 7328 (76%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GT 1GB

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GT 1GB GeForce GTX 650
Manufacturer nVidia nVidia
Year Dec 2007 September 2012
Code Name G92 GK107
Memory 1024 MB 2048 MB
Core Speed 600 MHz 1058 MHz
Memory Speed 1800 MHz 5000 MHz
Power (Max TDP) 105 watts 64 watts
Bandwidth 57600 MB/sec 80000 MB/sec
Texel Rate 33600 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65 nm 28 nm
Transistors 754 million 1300 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Bandwidth is the max amount of data (in units of megabytes per second) that can be moved past the external memory interface in a second. The number is worked out by multiplying the interface width by the speed of its memory. If the card has DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This is worked out by multiplying the total number of texture units by the core speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]