Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8600 GS (OEM) vs GeForce GTX 650

Intro

The GeForce 8600 GS (OEM) uses a 80 nm design. nVidia has clocked the core frequency at 540 MHz. The DDR2 memory is set to run at a speed of 400 MHz on this particular model. It features 32 SPUs along with 16 TAUs and 8 Rasterization Operator Units.

Compare all that to the GeForce GTX 650, which comes with a core clock speed of 1058 MHz and a GDDR5 memory speed of 1250 MHz. It also features a 128-bit bus, and makes use of a 28 nm design. It is made up of 384 SPUs, 32 Texture Address Units, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8600 GS (OEM) 47 Watts
GeForce GTX 650 64 Watts
Difference: 17 Watts (36%)

Memory Bandwidth

Theoretically, the GeForce GTX 650 should perform a lot faster than the GeForce 8600 GS (OEM) overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8600 GS (OEM) 12800 MB/sec
Difference: 67200 (525%)

Texel Rate

The GeForce GTX 650 should be much (approximately 292%) faster with regards to texture filtering than the GeForce 8600 GS (OEM). (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8600 GS (OEM) 8640 Mtexels/sec
Difference: 25216 (292%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce GTX 650 is superior to the GeForce 8600 GS (OEM), and very much so. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8600 GS (OEM) 4320 Mpixels/sec
Difference: 12608 (292%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8600 GS (OEM)

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8600 GS (OEM) GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2007 September 2012
Code Name G84 GK107
Fab Process 80 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 256 MB 2048 MB
Core Speed 540 MHz 1058 MHz
Shader Speed 1180 MHz 1058 MHz
Memory Speed 400 MHz (800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 32 384
Texture Mapping Units 16 32
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 47 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 12800 MB/sec 80000 MB/sec
Texel Rate 8640 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 4320 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (measured in MB per second) that can be transferred across the external memory interface within a second. It's worked out by multiplying the card's interface width by its memory speed. If the card has DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing