Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8600 GS (OEM) vs GeForce GTX 650

Intro

The GeForce 8600 GS (OEM) features a GPU core clock speed of 540 MHz, and the 256 MB of DDR2 memory is set to run at 400 MHz through a 128-bit bus. It also is comprised of 32 Stream Processors, 16 Texture Address Units, and 8 ROPs.

Compare those specs to the GeForce GTX 650, which has clock speeds of 1058 MHz on the GPU, and 1250 MHz on the 2048 MB of GDDR5 RAM. It features 384 SPUs as well as 32 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8600 GS (OEM) 47 Watts
GeForce GTX 650 64 Watts
Difference: 17 Watts (36%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 650 should in theory be quite a bit superior to the GeForce 8600 GS (OEM) overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8600 GS (OEM) 12800 MB/sec
Difference: 67200 (525%)

Texel Rate

The GeForce GTX 650 will be quite a bit (about 292%) better at anisotropic filtering than the GeForce 8600 GS (OEM). (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8600 GS (OEM) 8640 Mtexels/sec
Difference: 25216 (292%)

Pixel Rate

The GeForce GTX 650 should be quite a bit (approximately 292%) better at full screen anti-aliasing than the GeForce 8600 GS (OEM), and also should be capable of handling higher resolutions without slowing down too much. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8600 GS (OEM) 4320 Mpixels/sec
Difference: 12608 (292%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8600 GS (OEM)

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8600 GS (OEM) GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2007 September 2012
Code Name G84 GK107
Memory 256 MB 2048 MB
Core Speed 540 MHz 1058 MHz
Memory Speed 800 MHz 5000 MHz
Power (Max TDP) 47 watts 64 watts
Bandwidth 12800 MB/sec 80000 MB/sec
Texel Rate 8640 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 4320 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 32 384
Texture Mapping Units 16 32
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
Fab Process 80 nm 28 nm
Transistors 289 million 1300 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of MB per second) that can be transferred across the external memory interface in a second. It is calculated by multiplying the bus width by the speed of its memory. If the card has DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]