Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8600 GS (OEM) vs GeForce GTX 650

Intro

The GeForce 8600 GS (OEM) features a GPU clock speed of 540 MHz, and the 256 MB of DDR2 memory is set to run at 400 MHz through a 128-bit bus. It also is made up of 32 SPUs, 16 Texture Address Units, and 8 ROPs.

Compare those specifications to the GeForce GTX 650, which makes use of a 28 nm design. nVidia has clocked the core speed at 1058 MHz. The GDDR5 memory runs at a speed of 1250 MHz on this specific model. It features 384 SPUs as well as 32 Texture Address Units and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8600 GS (OEM) 47 Watts
GeForce GTX 650 64 Watts
Difference: 17 Watts (36%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 650 should theoretically be a lot superior to the GeForce 8600 GS (OEM) overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8600 GS (OEM) 12800 MB/sec
Difference: 67200 (525%)

Texel Rate

The GeForce GTX 650 is a lot (approximately 292%) more effective at anisotropic filtering than the GeForce 8600 GS (OEM). (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8600 GS (OEM) 8640 Mtexels/sec
Difference: 25216 (292%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GTX 650 is the winner, and very much so. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8600 GS (OEM) 4320 Mpixels/sec
Difference: 12608 (292%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8600 GS (OEM)

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8600 GS (OEM) GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2007 September 2012
Code Name G84 GK107
Memory 256 MB 2048 MB
Core Speed 540 MHz 1058 MHz
Memory Speed 800 MHz 5000 MHz
Power (Max TDP) 47 watts 64 watts
Bandwidth 12800 MB/sec 80000 MB/sec
Texel Rate 8640 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 4320 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 32 384
Texture Mapping Units 16 32
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
Fab Process 80 nm 28 nm
Transistors 289 million 1300 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of megabytes per second) that can be transported past the external memory interface in one second. It's calculated by multiplying the interface width by the speed of its memory. In the case of DDR RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed per second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly write to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]