Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8600 GS (OEM) vs GeForce GTX 650

Intro

The GeForce 8600 GS (OEM) features core clock speeds of 540 MHz on the GPU, and 400 MHz on the 256 MB of DDR2 RAM. It features 32 SPUs as well as 16 TAUs and 8 Rasterization Operator Units.

Compare those specs to the GeForce GTX 650, which comes with GPU core speed of 1058 MHz, and 2048 MB of GDDR5 memory running at 1250 MHz through a 128-bit bus. It also features 384 Stream Processors, 32 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8600 GS (OEM) 47 Watts
GeForce GTX 650 64 Watts
Difference: 17 Watts (36%)

Memory Bandwidth

The GeForce GTX 650, in theory, should perform quite a bit faster than the GeForce 8600 GS (OEM) overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8600 GS (OEM) 12800 MB/sec
Difference: 67200 (525%)

Texel Rate

The GeForce GTX 650 will be much (approximately 292%) better at texture filtering than the GeForce 8600 GS (OEM). (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8600 GS (OEM) 8640 Mtexels/sec
Difference: 25216 (292%)

Pixel Rate

The GeForce GTX 650 will be quite a bit (approximately 292%) faster with regards to FSAA than the GeForce 8600 GS (OEM), and will be capable of handling higher screen resolutions better. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8600 GS (OEM) 4320 Mpixels/sec
Difference: 12608 (292%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8600 GS (OEM)

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8600 GS (OEM) GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2007 September 2012
Code Name G84 GK107
Memory 256 MB 2048 MB
Core Speed 540 MHz 1058 MHz
Memory Speed 800 MHz 5000 MHz
Power (Max TDP) 47 watts 64 watts
Bandwidth 12800 MB/sec 80000 MB/sec
Texel Rate 8640 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 4320 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 32 384
Texture Mapping Units 16 32
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
Fab Process 80 nm 28 nm
Transistors 289 million 1300 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of megabytes per second) that can be transferred over the external memory interface within a second. It's worked out by multiplying the interface width by its memory clock speed. In the case of DDR type RAM, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This number is calculated by multiplying the total texture units by the core clock speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly write to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]