Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8600 GS (OEM) vs GeForce GTX 650

Intro

The GeForce 8600 GS (OEM) has a clock speed of 540 MHz and a DDR2 memory frequency of 400 MHz. It also features a 128-bit bus, and makes use of a 80 nm design. It features 32 SPUs, 16 TAUs, and 8 Raster Operation Units.

Compare those specifications to the GeForce GTX 650, which has GPU clock speed of 1058 MHz, and 2048 MB of GDDR5 memory set to run at 1250 MHz through a 128-bit bus. It also is comprised of 384 Stream Processors, 32 TAUs, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8600 GS (OEM) 47 Watts
GeForce GTX 650 64 Watts
Difference: 17 Watts (36%)

Memory Bandwidth

The GeForce GTX 650, in theory, should be a lot faster than the GeForce 8600 GS (OEM) in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8600 GS (OEM) 12800 MB/sec
Difference: 67200 (525%)

Texel Rate

The GeForce GTX 650 should be quite a bit (approximately 292%) faster with regards to AF than the GeForce 8600 GS (OEM). (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8600 GS (OEM) 8640 Mtexels/sec
Difference: 25216 (292%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX 650 is superior to the GeForce 8600 GS (OEM), by a large margin. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8600 GS (OEM) 4320 Mpixels/sec
Difference: 12608 (292%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8600 GS (OEM)

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8600 GS (OEM) GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2007 September 2012
Code Name G84 GK107
Fab Process 80 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 256 MB 2048 MB
Core Speed 540 MHz 1058 MHz
Shader Speed 1180 MHz 1058 MHz
Memory Speed 400 MHz (800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 32 384
Texture Mapping Units 16 32
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 47 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 12800 MB/sec 80000 MB/sec
Texel Rate 8640 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 4320 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (measured in megabytes per second) that can be transferred across the external memory interface within a second. The number is worked out by multiplying the card's bus width by the speed of its memory. In the case of DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This figure is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly write to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing