Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8600 GS (OEM) vs GeForce GTX 650

Intro

The GeForce 8600 GS (OEM) has a GPU core clock speed of 540 MHz, and the 256 MB of DDR2 RAM runs at 400 MHz through a 128-bit bus. It also is made up of 32 Stream Processors, 16 Texture Address Units, and 8 ROPs.

Compare those specifications to the GeForce GTX 650, which has a core clock speed of 1058 MHz and a GDDR5 memory frequency of 1250 MHz. It also uses a 128-bit memory bus, and makes use of a 28 nm design. It is comprised of 384 SPUs, 32 Texture Address Units, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8600 GS (OEM) 47 Watts
GeForce GTX 650 64 Watts
Difference: 17 Watts (36%)

Memory Bandwidth

In theory, the GeForce GTX 650 should perform much faster than the GeForce 8600 GS (OEM) in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8600 GS (OEM) 12800 MB/sec
Difference: 67200 (525%)

Texel Rate

The GeForce GTX 650 will be quite a bit (about 292%) faster with regards to anisotropic filtering than the GeForce 8600 GS (OEM). (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8600 GS (OEM) 8640 Mtexels/sec
Difference: 25216 (292%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce GTX 650 is a better choice, and very much so. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8600 GS (OEM) 4320 Mpixels/sec
Difference: 12608 (292%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8600 GS (OEM)

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8600 GS (OEM) GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2007 September 2012
Code Name G84 GK107
Fab Process 80 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 256 MB 2048 MB
Core Speed 540 MHz 1058 MHz
Shader Speed 1180 MHz 1058 MHz
Memory Speed 400 MHz (800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 32 384
Texture Mapping Units 16 32
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 47 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 12800 MB/sec 80000 MB/sec
Texel Rate 8640 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 4320 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of megabytes per second) that can be transported across the external memory interface in one second. The number is worked out by multiplying the card's bus width by its memory speed. If the card has DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total texture units of the card by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to its local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree