Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GTX vs GeForce GTX 650

Intro

The GeForce 9800 GTX has a core clock speed of 675 MHz and a GDDR3 memory frequency of 1100 MHz. It also makes use of a 256-bit memory bus, and uses a 65 nm design. It is comprised of 128 SPUs, 64 Texture Address Units, and 16 ROPs.

Compare that to the GeForce GTX 650, which uses a 28 nm design. nVidia has clocked the core speed at 1058 MHz. The GDDR5 memory is set to run at a speed of 1250 MHz on this specific model. It features 384 SPUs as well as 32 Texture Address Units and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 9800 GTX 140 Watts
Difference: 76 Watts (119%)

Memory Bandwidth

In theory, the GeForce GTX 650 is 14% faster than the GeForce 9800 GTX in general, because of its higher bandwidth. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 9800 GTX 70400 MB/sec
Difference: 9600 (14%)

Texel Rate

The GeForce 9800 GTX should be a lot (more or less 28%) more effective at texture filtering than the GeForce GTX 650. (explain)

GeForce 9800 GTX 43200 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 9344 (28%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GTX 650 is a better choice, by a large margin. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 9800 GTX 10800 Mpixels/sec
Difference: 6128 (57%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GTX

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GTX GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2008 September 2012
Code Name G92 GK107
Memory 512 MB 1024 MB
Core Speed 675 MHz 1058 MHz
Memory Speed 2200 MHz 5000 MHz
Power (Max TDP) 140 watts 64 watts
Bandwidth 70400 MB/sec 80000 MB/sec
Texel Rate 43200 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 10800 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 128 384
Texture Mapping Units 64 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65 nm 28 nm
Transistors 754 million 1300 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of information (in units of MB per second) that can be moved past the external memory interface within a second. It's calculated by multiplying the bus width by the speed of its memory. If the card has DDR type memory, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total amount of texture units by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly record to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]