Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GTX vs GeForce GTX 650

Intro

The GeForce 9800 GTX features clock speeds of 675 MHz on the GPU, and 1100 MHz on the 512 MB of GDDR3 RAM. It features 128 SPUs as well as 64 Texture Address Units and 16 ROPs.

Compare those specs to the GeForce GTX 650, which has core clock speeds of 1058 MHz on the GPU, and 1250 MHz on the 2048 MB of GDDR5 RAM. It features 384 SPUs as well as 32 TAUs and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 9800 GTX 140 Watts
Difference: 76 Watts (119%)

Memory Bandwidth

In theory, the GeForce GTX 650 should be a bit faster than the GeForce 9800 GTX overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 9800 GTX 70400 MB/sec
Difference: 9600 (14%)

Texel Rate

The GeForce 9800 GTX will be much (about 28%) faster with regards to AF than the GeForce GTX 650. (explain)

GeForce 9800 GTX 43200 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 9344 (28%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX 650 is superior to the GeForce 9800 GTX, by far. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 9800 GTX 10800 Mpixels/sec
Difference: 6128 (57%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GTX

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GTX GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2008 September 2012
Code Name G92 GK107
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 2048 MB
Core Speed 675 MHz 1058 MHz
Shader Speed 1688 MHz 1058 MHz
Memory Speed 1100 MHz (2200 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 128 384
Texture Mapping Units 64 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 140 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 70400 MB/sec 80000 MB/sec
Texel Rate 43200 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 10800 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in MB per second) that can be moved past the external memory interface in a second. The number is worked out by multiplying the bus width by its memory clock speed. In the case of DDR type RAM, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This figure is calculated by multiplying the total amount of texture units by the core speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree