Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GTX vs GeForce GTX 650

Intro

The GeForce 9800 GTX uses a 65 nm design. nVidia has clocked the core frequency at 675 MHz. The GDDR3 RAM runs at a frequency of 1100 MHz on this card. It features 128 SPUs as well as 64 TAUs and 16 ROPs.

Compare that to the GeForce GTX 650, which comes with a clock speed of 1058 MHz and a GDDR5 memory frequency of 1250 MHz. It also uses a 128-bit memory bus, and makes use of a 28 nm design. It is made up of 384 SPUs, 32 TAUs, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 9800 GTX 140 Watts
Difference: 76 Watts (119%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 650 should theoretically be a little bit better than the GeForce 9800 GTX in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 9800 GTX 70400 MB/sec
Difference: 9600 (14%)

Texel Rate

The GeForce 9800 GTX should be much (more or less 28%) faster with regards to anisotropic filtering than the GeForce GTX 650. (explain)

GeForce 9800 GTX 43200 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 9344 (28%)

Pixel Rate

The GeForce GTX 650 is much (about 57%) faster with regards to FSAA than the GeForce 9800 GTX, and also capable of handling higher resolutions while still performing well. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 9800 GTX 10800 Mpixels/sec
Difference: 6128 (57%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GTX

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GTX GeForce GTX 650
Manufacturer nVidia nVidia
Year April 2008 September 2012
Code Name G92 GK107
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 2048 MB
Core Speed 675 MHz 1058 MHz
Shader Speed 1688 MHz 1058 MHz
Memory Speed 1100 MHz (2200 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 128 384
Texture Mapping Units 64 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 140 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 70400 MB/sec 80000 MB/sec
Texel Rate 43200 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 10800 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (measured in megabytes per second) that can be moved across the external memory interface in a second. It's worked out by multiplying the card's interface width by the speed of its memory. In the case of DDR type RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This figure is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly write to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on quite a few other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree