Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 4850 512MB

Intro

The GeForce GTX 650 uses a 28 nm design. nVidia has clocked the core speed at 1058 MHz. The GDDR5 RAM runs at a frequency of 1250 MHz on this model. It features 384 SPUs as well as 32 TAUs and 16 ROPs.

Compare those specifications to the Radeon HD 4850 512MB, which comes with a core clock frequency of 625 MHz and a GDDR3 memory frequency of 993 MHz. It also makes use of a 256-bit bus, and uses a 55 nm design. It is comprised of 800(160x5) SPUs, 40 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
Radeon HD 4850 512MB 110 Watts
Difference: 46 Watts (72%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 650 will be 26% quicker than the Radeon HD 4850 512MB overall, because of its greater data rate. (explain)

GeForce GTX 650 80000 MB/sec
Radeon HD 4850 512MB 63552 MB/sec
Difference: 16448 (26%)

Texel Rate

The GeForce GTX 650 should be quite a bit (approximately 35%) better at AF than the Radeon HD 4850 512MB. (explain)

GeForce GTX 650 33856 Mtexels/sec
Radeon HD 4850 512MB 25000 Mtexels/sec
Difference: 8856 (35%)

Pixel Rate

The GeForce GTX 650 will be much (about 69%) faster with regards to FSAA than the Radeon HD 4850 512MB, and will be capable of handling higher screen resolutions while still performing well. (explain)

GeForce GTX 650 16928 Mpixels/sec
Radeon HD 4850 512MB 10000 Mpixels/sec
Difference: 6928 (69%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650

Amazon.com

Radeon HD 4850 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 650 Radeon HD 4850 512MB
Manufacturer nVidia AMD
Year September 2012 Jun 25, 2008
Code Name GK107 RV770 PRO
Memory 2048 MB 512 MB
Core Speed 1058 MHz 625 MHz
Memory Speed 5000 MHz 1986 MHz
Power (Max TDP) 64 watts 110 watts
Bandwidth 80000 MB/sec 63552 MB/sec
Texel Rate 33856 Mtexels/sec 25000 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 10000 Mpixels/sec
Unified Shaders 384 800(160x5)
Texture Mapping Units 32 40
Render Output Units 16 16
Bus Type GDDR5 GDDR3
Bus Width 128-bit 256-bit
Fab Process 28 nm 55 nm
Transistors 1300 million 956 million
Bus PCIe 3.0 x16 PCIe 2.0 x16
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.3 OpenGL 3.0

Memory Bandwidth: Bandwidth is the largest amount of data (counted in MB per second) that can be moved over the external memory interface within a second. The number is worked out by multiplying the card's interface width by its memory clock speed. In the case of DDR RAM, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly write to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]