Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 4890 2GB

Intro

The GeForce GTX 650 has a GPU core speed of 1058 MHz, and the 2048 MB of GDDR5 memory runs at 1250 MHz through a 128-bit bus. It also is comprised of 384 SPUs, 32 TAUs, and 16 ROPs.

Compare all that to the Radeon HD 4890 2GB, which features GPU clock speed of 1000 MHz, and 2048 MB of GDDR5 RAM running at 975 MHz through a 256-bit bus. It also features 800(160x5) Stream Processors, 40 Texture Address Units, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
Radeon HD 4890 2GB 190 Watts
Difference: 126 Watts (197%)

Memory Bandwidth

Theoretically, the Radeon HD 4890 2GB should be quite a bit faster than the GeForce GTX 650 in general. (explain)

Radeon HD 4890 2GB 124800 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 44800 (56%)

Texel Rate

The Radeon HD 4890 2GB will be just a bit (about 18%) better at anisotropic filtering than the GeForce GTX 650. (explain)

Radeon HD 4890 2GB 40000 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 6144 (18%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce GTX 650 is superior to the Radeon HD 4890 2GB, but only just. (explain)

GeForce GTX 650 16928 Mpixels/sec
Radeon HD 4890 2GB 16000 Mpixels/sec
Difference: 928 (6%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 650

Amazon.com

Radeon HD 4890 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 650 Radeon HD 4890 2GB
Manufacturer nVidia AMD
Year September 2012 Apr 2, 2009
Code Name GK107 RV790 XT
Fab Process 28 nm 55 nm
Bus PCIe 3.0 x16 PCIe 2.0 x16
Memory 2048 MB 2048 MB
Core Speed 1058 MHz 1000 MHz
Shader Speed 1058 MHz (N/A) MHz
Memory Speed 1250 MHz (5000 MHz effective) 975 MHz (3900 MHz effective)
Unified Shaders 384 800(160x5)
Texture Mapping Units 32 40
Render Output Units 16 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.3 OpenGL 3.0
Power (Max TDP) 64 watts 190 watts
Shader Model 5.0 4.1
Bandwidth 80000 MB/sec 124800 MB/sec
Texel Rate 33856 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be moved past the external memory interface within a second. It's worked out by multiplying the card's bus width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly write to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree