Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 4890 2GB

Intro

The GeForce GTX 650 features a GPU clock speed of 1058 MHz, and the 2048 MB of GDDR5 RAM is set to run at 1250 MHz through a 128-bit bus. It also is made up of 384 SPUs, 32 Texture Address Units, and 16 Raster Operation Units.

Compare those specs to the Radeon HD 4890 2GB, which features a core clock speed of 1000 MHz and a GDDR5 memory speed of 975 MHz. It also features a 256-bit memory bus, and makes use of a 55 nm design. It features 800(160x5) SPUs, 40 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
Radeon HD 4890 2GB 190 Watts
Difference: 126 Watts (197%)

Memory Bandwidth

Performance-wise, the Radeon HD 4890 2GB should in theory be a lot superior to the GeForce GTX 650 in general. (explain)

Radeon HD 4890 2GB 124800 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 44800 (56%)

Texel Rate

The Radeon HD 4890 2GB will be a bit (approximately 18%) more effective at anisotropic filtering than the GeForce GTX 650. (explain)

Radeon HD 4890 2GB 40000 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 6144 (18%)

Pixel Rate

The GeForce GTX 650 will be a little bit (more or less 6%) more effective at FSAA than the Radeon HD 4890 2GB, and will be capable of handling higher resolutions more effectively. (explain)

GeForce GTX 650 16928 Mpixels/sec
Radeon HD 4890 2GB 16000 Mpixels/sec
Difference: 928 (6%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650

Amazon.com

Radeon HD 4890 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 650 Radeon HD 4890 2GB
Manufacturer nVidia AMD
Year September 2012 Apr 2, 2009
Code Name GK107 RV790 XT
Memory 2048 MB 2048 MB
Core Speed 1058 MHz 1000 MHz
Memory Speed 5000 MHz 3900 MHz
Power (Max TDP) 64 watts 190 watts
Bandwidth 80000 MB/sec 124800 MB/sec
Texel Rate 33856 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 16000 Mpixels/sec
Unified Shaders 384 800(160x5)
Texture Mapping Units 32 40
Render Output Units 16 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
Fab Process 28 nm 55 nm
Transistors 1300 million 959 million
Bus PCIe 3.0 x16 PCIe 2.0 x16
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.3 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the largest amount of data (counted in MB per second) that can be transported over the external memory interface in a second. It's calculated by multiplying the card's bus width by its memory clock speed. In the case of DDR RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]