Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 6870

Intro

The GeForce GTX 650 has core clock speeds of 1058 MHz on the GPU, and 1250 MHz on the 2048 MB of GDDR5 memory. It features 384 SPUs along with 32 TAUs and 16 Rasterization Operator Units.

Compare those specs to the Radeon HD 6870, which makes use of a 40 nm design. AMD has set the core speed at 900 MHz. The GDDR5 RAM works at a speed of 1050 MHz on this specific model. It features 1120 SPUs as well as 56 Texture Address Units and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
Radeon HD 6870 151 Watts
Difference: 87 Watts (136%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 6870 is 68% faster than the GeForce GTX 650 in general, due to its greater data rate. (explain)

Radeon HD 6870 134400 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 54400 (68%)

Texel Rate

The Radeon HD 6870 is a lot (about 49%) more effective at anisotropic filtering than the GeForce GTX 650. (explain)

Radeon HD 6870 50400 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 16544 (49%)

Pixel Rate

The Radeon HD 6870 should be much (more or less 70%) better at FSAA than the GeForce GTX 650, and also will be capable of handling higher screen resolutions without losing too much performance. (explain)

Radeon HD 6870 28800 Mpixels/sec
GeForce GTX 650 16928 Mpixels/sec
Difference: 11872 (70%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650

Amazon.com

Radeon HD 6870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 650 Radeon HD 6870
Manufacturer nVidia AMD
Year September 2012 October 2010
Code Name GK107 Barts XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe x16
Memory 2048 MB 1024 MB
Core Speed 1058 MHz 900 MHz
Shader Speed 1058 MHz (N/A) MHz
Memory Speed 5000 MHz 4200 MHz
Unified Shaders 384 1120
Texture Mapping Units 32 56
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 4.1
Power (Max TDP) 64 watts 151 watts
Shader Model 5.0 5.0
Bandwidth 80000 MB/sec 134400 MB/sec
Texel Rate 33856 Mtexels/sec 50400 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 28800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in MB per second) that can be moved across the external memory interface within a second. The number is worked out by multiplying the card's interface width by its memory clock speed. In the case of DDR RAM, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This number is calculated by multiplying the total texture units by the core speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly record to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing