Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 6870

Intro

The GeForce GTX 650 comes with a core clock speed of 1058 MHz and a GDDR5 memory frequency of 1250 MHz. It also features a 128-bit bus, and uses a 28 nm design. It features 384 SPUs, 32 TAUs, and 16 ROPs.

Compare all of that to the Radeon HD 6870, which features core clock speeds of 900 MHz on the GPU, and 1050 MHz on the 1024 MB of GDDR5 memory. It features 1120 SPUs as well as 56 Texture Address Units and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
Radeon HD 6870 151 Watts
Difference: 87 Watts (136%)

Memory Bandwidth

The Radeon HD 6870 should theoretically be quite a bit faster than the GeForce GTX 650 in general. (explain)

Radeon HD 6870 134400 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 54400 (68%)

Texel Rate

The Radeon HD 6870 is quite a bit (about 49%) more effective at anisotropic filtering than the GeForce GTX 650. (explain)

Radeon HD 6870 50400 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 16544 (49%)

Pixel Rate

The Radeon HD 6870 is a lot (about 70%) more effective at full screen anti-aliasing than the GeForce GTX 650, and also should be able to handle higher resolutions better. (explain)

Radeon HD 6870 28800 Mpixels/sec
GeForce GTX 650 16928 Mpixels/sec
Difference: 11872 (70%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650

Amazon.com

Radeon HD 6870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 650 Radeon HD 6870
Manufacturer nVidia AMD
Year September 2012 October 2010
Code Name GK107 Barts XT
Memory 2048 MB 1024 MB
Core Speed 1058 MHz 900 MHz
Memory Speed 5000 MHz 4200 MHz
Power (Max TDP) 64 watts 151 watts
Bandwidth 80000 MB/sec 134400 MB/sec
Texel Rate 33856 Mtexels/sec 50400 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 28800 Mpixels/sec
Unified Shaders 384 1120
Texture Mapping Units 32 56
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
Fab Process 28 nm 40 nm
Transistors 1300 million 1700 million
Bus PCIe 3.0 x16 PCIe x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in megabytes per second) that can be transferred across the external memory interface in a second. It's calculated by multiplying the card's interface width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly record to its local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]