Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 6670 (OEM) 1GB

Intro

The GeForce GTX 650 makes use of a 28 nm design. nVidia has set the core frequency at 1058 MHz. The GDDR5 memory runs at a frequency of 1250 MHz on this specific card. It features 384 SPUs along with 32 Texture Address Units and 16 ROPs.

Compare all that to the Radeon HD 6670 (OEM) 1GB, which features clock speeds of 800 MHz on the GPU, and 1000 MHz on the 1024 MB of GDDR5 RAM. It features 480 SPUs along with 24 Texture Address Units and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6670 (OEM) 1GB 63 Watts
GeForce GTX 650 64 Watts
Difference: 1 Watts (2%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 650 is 25% quicker than the Radeon HD 6670 (OEM) 1GB overall, because of its higher bandwidth. (explain)

GeForce GTX 650 80000 MB/sec
Radeon HD 6670 (OEM) 1GB 64000 MB/sec
Difference: 16000 (25%)

Texel Rate

The GeForce GTX 650 will be a lot (approximately 76%) faster with regards to anisotropic filtering than the Radeon HD 6670 (OEM) 1GB. (explain)

GeForce GTX 650 33856 Mtexels/sec
Radeon HD 6670 (OEM) 1GB 19200 Mtexels/sec
Difference: 14656 (76%)

Pixel Rate

The GeForce GTX 650 should be a lot (more or less 165%) faster with regards to AA than the Radeon HD 6670 (OEM) 1GB, and also should be able to handle higher screen resolutions better. (explain)

GeForce GTX 650 16928 Mpixels/sec
Radeon HD 6670 (OEM) 1GB 6400 Mpixels/sec
Difference: 10528 (165%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650

Amazon.com

Radeon HD 6670 (OEM) 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 650 Radeon HD 6670 (OEM) 1GB
Manufacturer nVidia AMD
Year September 2012 February 2011
Code Name GK107 Turks
Memory 2048 MB 1024 MB
Core Speed 1058 MHz 800 MHz
Memory Speed 5000 MHz 4000 MHz
Power (Max TDP) 64 watts 63 watts
Bandwidth 80000 MB/sec 64000 MB/sec
Texel Rate 33856 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 6400 Mpixels/sec
Unified Shaders 384 480
Texture Mapping Units 32 24
Render Output Units 16 8
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
Fab Process 28 nm 40 nm
Transistors 1300 million 715 million
Bus PCIe 3.0 x16 PCIe 2.1 x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 4.1

Memory Bandwidth: Bandwidth is the largest amount of data (in units of MB per second) that can be transferred over the external memory interface in one second. It's calculated by multiplying the interface width by its memory clock speed. If the card has DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]