Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 6670 (OEM) 1GB

Intro

The GeForce GTX 650 features a GPU clock speed of 1058 MHz, and the 2048 MB of GDDR5 memory is set to run at 1250 MHz through a 128-bit bus. It also is comprised of 384 Stream Processors, 32 TAUs, and 16 Raster Operation Units.

Compare all of that to the Radeon HD 6670 (OEM) 1GB, which features GPU clock speed of 800 MHz, and 1024 MB of GDDR5 memory set to run at 1000 MHz through a 128-bit bus. It also is made up of 480 Stream Processors, 24 TAUs, and 8 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6670 (OEM) 1GB 63 Watts
GeForce GTX 650 64 Watts
Difference: 1 Watts (2%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 650 should theoretically be much better than the Radeon HD 6670 (OEM) 1GB overall. (explain)

GeForce GTX 650 80000 MB/sec
Radeon HD 6670 (OEM) 1GB 64000 MB/sec
Difference: 16000 (25%)

Texel Rate

The GeForce GTX 650 is much (approximately 76%) more effective at texture filtering than the Radeon HD 6670 (OEM) 1GB. (explain)

GeForce GTX 650 33856 Mtexels/sec
Radeon HD 6670 (OEM) 1GB 19200 Mtexels/sec
Difference: 14656 (76%)

Pixel Rate

The GeForce GTX 650 is a lot (about 165%) more effective at full screen anti-aliasing than the Radeon HD 6670 (OEM) 1GB, and able to handle higher resolutions while still performing well. (explain)

GeForce GTX 650 16928 Mpixels/sec
Radeon HD 6670 (OEM) 1GB 6400 Mpixels/sec
Difference: 10528 (165%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650

Amazon.com

Radeon HD 6670 (OEM) 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 650 Radeon HD 6670 (OEM) 1GB
Manufacturer nVidia AMD
Year September 2012 February 2011
Code Name GK107 Turks
Memory 2048 MB 1024 MB
Core Speed 1058 MHz 800 MHz
Memory Speed 5000 MHz 4000 MHz
Power (Max TDP) 64 watts 63 watts
Bandwidth 80000 MB/sec 64000 MB/sec
Texel Rate 33856 Mtexels/sec 19200 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 6400 Mpixels/sec
Unified Shaders 384 480
Texture Mapping Units 32 24
Render Output Units 16 8
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
Fab Process 28 nm 40 nm
Transistors 1300 million 715 million
Bus PCIe 3.0 x16 PCIe 2.1 x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 4.1

Memory Bandwidth: Bandwidth is the largest amount of information (counted in MB per second) that can be transported past the external memory interface in a second. It's calculated by multiplying the card's interface width by the speed of its memory. If the card has DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly write to the local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]