Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 7850

Intro

The GeForce GTX 650 features a GPU clock speed of 1058 MHz, and the 2048 MB of GDDR5 RAM runs at 1250 MHz through a 128-bit bus. It also is made up of 384 SPUs, 32 TAUs, and 16 ROPs.

Compare those specs to the Radeon HD 7850, which features a clock frequency of 860 MHz and a GDDR5 memory speed of 1200 MHz. It also uses a 256-bit memory bus, and uses a 28 nm design. It features 1024 SPUs, 64 TAUs, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
Radeon HD 7850 130 Watts
Difference: 66 Watts (103%)

Memory Bandwidth

The Radeon HD 7850 should in theory be quite a bit faster than the GeForce GTX 650 overall. (explain)

Radeon HD 7850 153600 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 73600 (92%)

Texel Rate

The Radeon HD 7850 is a lot (about 63%) better at texture filtering than the GeForce GTX 650. (explain)

Radeon HD 7850 55040 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 21184 (63%)

Pixel Rate

The Radeon HD 7850 will be a lot (approximately 63%) better at AA than the GeForce GTX 650, and should be capable of handling higher screen resolutions without slowing down too much. (explain)

Radeon HD 7850 27520 Mpixels/sec
GeForce GTX 650 16928 Mpixels/sec
Difference: 10592 (63%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 650

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 650 Radeon HD 7850
Manufacturer nVidia AMD
Year September 2012 March 2012
Code Name GK107 Pitcairn Pro
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 1058 MHz 860 MHz
Shader Speed 1058 MHz (N/A) MHz
Memory Speed 1250 MHz (5000 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 384 1024
Texture Mapping Units 32 64
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 64 watts 130 watts
Shader Model 5.0 5.0
Bandwidth 80000 MB/sec 153600 MB/sec
Texel Rate 33856 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 27520 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (in units of megabytes per second) that can be moved over the external memory interface in one second. It is calculated by multiplying the card's bus width by its memory clock speed. If it uses DDR type RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree