Compare any two graphics cards:
VS

GeForce GTX 660 vs Radeon HD 5770

Intro

The GeForce GTX 660 comes with a core clock speed of 980 MHz and a GDDR5 memory speed of 1502 MHz. It also features a 192-bit bus, and uses a 28 nm design. It is made up of 960 SPUs, 80 TAUs, and 24 ROPs.

Compare those specs to the Radeon HD 5770, which comes with a core clock frequency of 850 MHz and a GDDR5 memory frequency of 1200 MHz. It also uses a 128-bit memory bus, and uses a 40 nm design. It features 800(160x5) SPUs, 40 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
GeForce GTX 660 140 Watts
Difference: 32 Watts (30%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 660 should in theory be much superior to the Radeon HD 5770 in general. (explain)

GeForce GTX 660 144192 MB/sec
Radeon HD 5770 76800 MB/sec
Difference: 67392 (88%)

Texel Rate

The GeForce GTX 660 is a lot (more or less 131%) faster with regards to anisotropic filtering than the Radeon HD 5770. (explain)

GeForce GTX 660 78400 Mtexels/sec
Radeon HD 5770 34000 Mtexels/sec
Difference: 44400 (131%)

Pixel Rate

The GeForce GTX 660 will be much (more or less 73%) faster with regards to AA than the Radeon HD 5770, and also able to handle higher resolutions without losing too much performance. (explain)

GeForce GTX 660 23520 Mpixels/sec
Radeon HD 5770 13600 Mpixels/sec
Difference: 9920 (73%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 660

Amazon.com

Radeon HD 5770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 660 Radeon HD 5770
Manufacturer nVidia AMD
Year September 2012 October 13, 2009
Code Name GK106 Juniper XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 2048 MB 1024 MB
Core Speed 980 MHz 850 MHz
Shader Speed 980 MHz (N/A) MHz
Memory Speed 6008 MHz 4800 MHz
Unified Shaders 960 800(160x5)
Texture Mapping Units 80 40
Render Output Units 24 16
Bus Type GDDR5 GDDR5
Bus Width 192-bit 128-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2
Power (Max TDP) 140 watts 108 watts
Shader Model 5.0 5.0
Bandwidth 144192 MB/sec 76800 MB/sec
Texel Rate 78400 Mtexels/sec 34000 Mtexels/sec
Pixel Rate 23520 Mpixels/sec 13600 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (measured in MB per second) that can be moved over the external memory interface in a second. It is calculated by multiplying the card's interface width by its memory clock speed. If the card has DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The higher this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing