Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 660 vs Radeon HD 5770

Intro

The GeForce GTX 660 has a GPU clock speed of 980 MHz, and the 2048 MB of GDDR5 memory runs at 1502 MHz through a 192-bit bus. It also features 960 Stream Processors, 80 Texture Address Units, and 24 Raster Operation Units.

Compare all that to the Radeon HD 5770, which has a core clock speed of 850 MHz and a GDDR5 memory frequency of 1200 MHz. It also uses a 128-bit bus, and uses a 40 nm design. It is comprised of 800(160x5) SPUs, 40 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
GeForce GTX 660 140 Watts
Difference: 32 Watts (30%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 660 will be 88% quicker than the Radeon HD 5770 overall, due to its greater data rate. (explain)

GeForce GTX 660 144192 MB/sec
Radeon HD 5770 76800 MB/sec
Difference: 67392 (88%)

Texel Rate

The GeForce GTX 660 is a lot (approximately 131%) faster with regards to texture filtering than the Radeon HD 5770. (explain)

GeForce GTX 660 78400 Mtexels/sec
Radeon HD 5770 34000 Mtexels/sec
Difference: 44400 (131%)

Pixel Rate

The GeForce GTX 660 is quite a bit (about 73%) more effective at anti-aliasing than the Radeon HD 5770, and will be able to handle higher screen resolutions better. (explain)

GeForce GTX 660 23520 Mpixels/sec
Radeon HD 5770 13600 Mpixels/sec
Difference: 9920 (73%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 660

Amazon.com

Radeon HD 5770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 660 Radeon HD 5770
Manufacturer nVidia AMD
Year September 2012 October 13, 2009
Code Name GK106 Juniper XT
Memory 2048 MB 1024 MB
Core Speed 980 MHz 850 MHz
Memory Speed 6008 MHz 4800 MHz
Power (Max TDP) 140 watts 108 watts
Bandwidth 144192 MB/sec 76800 MB/sec
Texel Rate 78400 Mtexels/sec 34000 Mtexels/sec
Pixel Rate 23520 Mpixels/sec 13600 Mpixels/sec
Unified Shaders 960 800(160x5)
Texture Mapping Units 80 40
Render Output Units 24 16
Bus Type GDDR5 GDDR5
Bus Width 192-bit 128-bit
Fab Process 28 nm 40 nm
Transistors 2540 million 1040 million
Bus PCIe 3.0 x16 PCIe 2.1 x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of megabytes per second) that can be moved past the external memory interface in one second. It is calculated by multiplying the card's bus width by its memory clock speed. In the case of DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This number is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly write to the local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]