Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 460 vs GeForce GTX 660

Intro

The GeForce GTX 460 features a clock speed of 675 MHz and a GDDR5 memory frequency of 900 MHz. It also makes use of a 192-bit bus, and uses a 40 nm design. It features 336 SPUs, 56 TAUs, and 24 ROPs.

Compare that to the GeForce GTX 660, which makes use of a 28 nm design. nVidia has clocked the core frequency at 980 MHz. The GDDR5 RAM is set to run at a frequency of 1502 MHz on this specific model. It features 960 SPUs as well as 80 TAUs and 24 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 140 Watts
GeForce GTX 460 150 Watts
Difference: 10 Watts (7%)

Memory Bandwidth

Theoretically, the GeForce GTX 660 should be a lot faster than the GeForce GTX 460 overall. (explain)

GeForce GTX 660 144192 MB/sec
GeForce GTX 460 86400 MB/sec
Difference: 57792 (67%)

Texel Rate

The GeForce GTX 660 is a lot (about 107%) more effective at anisotropic filtering than the GeForce GTX 460. (explain)

GeForce GTX 660 78400 Mtexels/sec
GeForce GTX 460 37800 Mtexels/sec
Difference: 40600 (107%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the GeForce GTX 660 is a better choice, by far. (explain)

GeForce GTX 660 23520 Mpixels/sec
GeForce GTX 460 16200 Mpixels/sec
Difference: 7320 (45%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 460

Amazon.com

Other US-based stores

GeForce GTX 660

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 460 GeForce GTX 660
Manufacturer nVidia nVidia
Year July 2010 September 2012
Code Name GF104 GK106
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 768 MB 2048 MB
Core Speed 675 MHz 980 MHz
Shader Speed 1350 MHz 980 MHz
Memory Speed 900 MHz (3600 MHz effective) 1502 MHz (6008 MHz effective)
Unified Shaders 336 960
Texture Mapping Units 56 80
Render Output Units 24 24
Bus Type GDDR5 GDDR5
Bus Width 192-bit 192-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 150 watts 140 watts
Shader Model 5.0 5.0
Bandwidth 86400 MB/sec 144192 MB/sec
Texel Rate 37800 Mtexels/sec 78400 Mtexels/sec
Pixel Rate 16200 Mpixels/sec 23520 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (counted in megabytes per second) that can be transported over the external memory interface within a second. It is worked out by multiplying the bus width by its memory clock speed. If the card has DDR RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed per second. This number is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree