Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 460 vs GeForce GTX 660

Intro

The GeForce GTX 460 makes use of a 40 nm design. nVidia has clocked the core speed at 675 MHz. The GDDR5 memory works at a frequency of 900 MHz on this specific card. It features 336 SPUs as well as 56 Texture Address Units and 24 ROPs.

Compare those specifications to the GeForce GTX 660, which uses a 28 nm design. nVidia has clocked the core speed at 980 MHz. The GDDR5 memory runs at a frequency of 1502 MHz on this model. It features 960 SPUs as well as 80 TAUs and 24 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 140 Watts
GeForce GTX 460 150 Watts
Difference: 10 Watts (7%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 660 should perform quite a bit faster than the GeForce GTX 460 in general. (explain)

GeForce GTX 660 144192 MB/sec
GeForce GTX 460 86400 MB/sec
Difference: 57792 (67%)

Texel Rate

The GeForce GTX 660 is quite a bit (approximately 107%) more effective at anisotropic filtering than the GeForce GTX 460. (explain)

GeForce GTX 660 78400 Mtexels/sec
GeForce GTX 460 37800 Mtexels/sec
Difference: 40600 (107%)

Pixel Rate

The GeForce GTX 660 will be much (approximately 45%) better at anti-aliasing than the GeForce GTX 460, and also capable of handling higher resolutions without slowing down too much. (explain)

GeForce GTX 660 23520 Mpixels/sec
GeForce GTX 460 16200 Mpixels/sec
Difference: 7320 (45%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 460

Amazon.com

GeForce GTX 660

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 460 GeForce GTX 660
Manufacturer nVidia nVidia
Year July 2010 September 2012
Code Name GF104 GK106
Memory 768 MB 2048 MB
Core Speed 675 MHz 980 MHz
Memory Speed 3600 MHz 6008 MHz
Power (Max TDP) 150 watts 140 watts
Bandwidth 86400 MB/sec 144192 MB/sec
Texel Rate 37800 Mtexels/sec 78400 Mtexels/sec
Pixel Rate 16200 Mpixels/sec 23520 Mpixels/sec
Unified Shaders 336 960
Texture Mapping Units 56 80
Render Output Units 24 24
Bus Type GDDR5 GDDR5
Bus Width 192-bit 192-bit
Fab Process 40 nm 28 nm
Transistors 1950 million 2540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Bandwidth is the max amount of information (measured in MB per second) that can be transferred past the external memory interface in a second. It is worked out by multiplying the bus width by its memory speed. If the card has DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This number is calculated by multiplying the total texture units by the core speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly write to the local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]