Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 460 vs GeForce GTX 660

Intro

The GeForce GTX 460 comes with a GPU core speed of 675 MHz, and the 768 MB of GDDR5 RAM runs at 900 MHz through a 192-bit bus. It also is comprised of 336 SPUs, 56 Texture Address Units, and 24 Raster Operation Units.

Compare all that to the GeForce GTX 660, which comes with a clock frequency of 980 MHz and a GDDR5 memory speed of 1502 MHz. It also makes use of a 192-bit bus, and makes use of a 28 nm design. It features 960 SPUs, 80 TAUs, and 24 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 140 Watts
GeForce GTX 460 150 Watts
Difference: 10 Watts (7%)

Memory Bandwidth

Performance-wise, the GeForce GTX 660 should in theory be much better than the GeForce GTX 460 in general. (explain)

GeForce GTX 660 144192 MB/sec
GeForce GTX 460 86400 MB/sec
Difference: 57792 (67%)

Texel Rate

The GeForce GTX 660 should be much (more or less 107%) faster with regards to AF than the GeForce GTX 460. (explain)

GeForce GTX 660 78400 Mtexels/sec
GeForce GTX 460 37800 Mtexels/sec
Difference: 40600 (107%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce GTX 660 is superior to the GeForce GTX 460, by a large margin. (explain)

GeForce GTX 660 23520 Mpixels/sec
GeForce GTX 460 16200 Mpixels/sec
Difference: 7320 (45%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 460

Amazon.com

GeForce GTX 660

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 460 GeForce GTX 660
Manufacturer nVidia nVidia
Year July 2010 September 2012
Code Name GF104 GK106
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 768 MB 2048 MB
Core Speed 675 MHz 980 MHz
Shader Speed 1350 MHz 980 MHz
Memory Speed 900 MHz (3600 MHz effective) 1502 MHz (6008 MHz effective)
Unified Shaders 336 960
Texture Mapping Units 56 80
Render Output Units 24 24
Bus Type GDDR5 GDDR5
Bus Width 192-bit 192-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 150 watts 140 watts
Shader Model 5.0 5.0
Bandwidth 86400 MB/sec 144192 MB/sec
Texel Rate 37800 Mtexels/sec 78400 Mtexels/sec
Pixel Rate 16200 Mpixels/sec 23520 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in megabytes per second) that can be moved over the external memory interface within a second. It is calculated by multiplying the card's interface width by its memory speed. In the case of DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree