Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 470 vs GeForce GTX 660 Ti

Intro

The GeForce GTX 470 comes with core speeds of 607 MHz on the GPU, and 837 MHz on the 1280 MB of GDDR5 memory. It features 448 SPUs along with 56 Texture Address Units and 40 Rasterization Operator Units.

Compare those specifications to the GeForce GTX 660 Ti, which features GPU core speed of 915 MHz, and 2048 MB of GDDR5 memory running at 1500 MHz through a 192-bit bus. It also is made up of 1344 Stream Processors, 112 Texture Address Units, and 24 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
GeForce GTX 470 215 Watts
Difference: 65 Watts (43%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 660 Ti should theoretically be a small bit better than the GeForce GTX 470 overall. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce GTX 470 133920 MB/sec
Difference: 10080 (8%)

Texel Rate

The GeForce GTX 660 Ti will be a lot (about 201%) more effective at texture filtering than the GeForce GTX 470. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce GTX 470 33992 Mtexels/sec
Difference: 68488 (201%)

Pixel Rate

The GeForce GTX 470 should be a small bit (approximately 11%) faster with regards to AA than the GeForce GTX 660 Ti, and capable of handling higher resolutions while still performing well. (explain)

GeForce GTX 470 24280 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 2320 (11%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 470

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 470 GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year March 2010 August 2012
Code Name GF100 GK104
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1280 MB 2048 MB
Core Speed 607 MHz 915 MHz
Shader Speed 1215 MHz 915 MHz
Memory Speed 837 MHz (3348 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 448 1344
Texture Mapping Units 56 112
Render Output Units 40 24
Bus Type GDDR5 GDDR5
Bus Width 320-bit 192-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 215 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 133920 MB/sec 144000 MB/sec
Texel Rate 33992 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 24280 Mpixels/sec 21960 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (counted in MB per second) that can be transferred past the external memory interface in a second. It is worked out by multiplying the card's interface width by its memory speed. If the card has DDR memory, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing