Compare any two graphics cards:
VS

GeForce GTX 470 vs GeForce GTX 660 Ti

Intro

The GeForce GTX 470 features clock speeds of 607 MHz on the GPU, and 837 MHz on the 1280 MB of GDDR5 RAM. It features 448 SPUs along with 56 TAUs and 40 ROPs.

Compare those specs to the GeForce GTX 660 Ti, which has GPU clock speed of 915 MHz, and 2048 MB of GDDR5 RAM set to run at 1500 MHz through a 192-bit bus. It also is made up of 1344 Stream Processors, 112 TAUs, and 24 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
GeForce GTX 470 215 Watts
Difference: 65 Watts (43%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 660 Ti will be 8% quicker than the GeForce GTX 470 overall, due to its greater data rate. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce GTX 470 133920 MB/sec
Difference: 10080 (8%)

Texel Rate

The GeForce GTX 660 Ti should be quite a bit (more or less 201%) faster with regards to texture filtering than the GeForce GTX 470. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce GTX 470 33992 Mtexels/sec
Difference: 68488 (201%)

Pixel Rate

The GeForce GTX 470 will be a bit (about 11%) better at full screen anti-aliasing than the GeForce GTX 660 Ti, and should be able to handle higher screen resolutions while still performing well. (explain)

GeForce GTX 470 24280 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 2320 (11%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 470

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 470 GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year March 2010 August 2012
Code Name GF100 GK104
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1280 MB 2048 MB
Core Speed 607 MHz 915 MHz
Shader Speed 1215 MHz 915 MHz
Memory Speed 3348 MHz 6000 MHz
Unified Shaders 448 1344
Texture Mapping Units 56 112
Render Output Units 40 24
Bus Type GDDR5 GDDR5
Bus Width 320-bit 192-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 215 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 133920 MB/sec 144000 MB/sec
Texel Rate 33992 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 24280 Mpixels/sec 21960 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in MB per second) that can be transferred across the external memory interface within a second. It's worked out by multiplying the interface width by its memory speed. If the card has DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing