Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 470 vs GeForce GTX 660 Ti

Intro

The GeForce GTX 470 uses a 40 nm design. nVidia has clocked the core frequency at 607 MHz. The GDDR5 memory runs at a speed of 837 MHz on this specific card. It features 448 SPUs as well as 56 Texture Address Units and 40 Rasterization Operator Units.

Compare all that to the GeForce GTX 660 Ti, which has a clock speed of 915 MHz and a GDDR5 memory frequency of 1500 MHz. It also features a 192-bit bus, and uses a 28 nm design. It is comprised of 1344 SPUs, 112 Texture Address Units, and 24 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
GeForce GTX 470 215 Watts
Difference: 65 Watts (43%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 660 Ti should be a small bit faster than the GeForce GTX 470 in general. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce GTX 470 133920 MB/sec
Difference: 10080 (8%)

Texel Rate

The GeForce GTX 660 Ti is a lot (approximately 201%) more effective at AF than the GeForce GTX 470. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce GTX 470 33992 Mtexels/sec
Difference: 68488 (201%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX 470 is a better choice, though not by far. (explain)

GeForce GTX 470 24280 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 2320 (11%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 470

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 470 GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year March 2010 August 2012
Code Name GF100 GK104
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1280 MB 2048 MB
Core Speed 607 MHz 915 MHz
Shader Speed 1215 MHz 915 MHz
Memory Speed 837 MHz (3348 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 448 1344
Texture Mapping Units 56 112
Render Output Units 40 24
Bus Type GDDR5 GDDR5
Bus Width 320-bit 192-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 215 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 133920 MB/sec 144000 MB/sec
Texel Rate 33992 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 24280 Mpixels/sec 21960 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (measured in megabytes per second) that can be transported over the external memory interface within a second. It's worked out by multiplying the card's interface width by the speed of its memory. In the case of DDR type RAM, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed in one second. This number is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly record to its local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree