Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 550 Ti vs GeForce GTX 660 Ti

Intro

The GeForce GTX 550 Ti comes with a GPU core clock speed of 900 MHz, and the 1024 MB of GDDR5 RAM is set to run at 1026 MHz through a 192-bit bus. It also is comprised of 192 Stream Processors, 32 TAUs, and 24 Raster Operation Units.

Compare all of that to the GeForce GTX 660 Ti, which has core clock speeds of 915 MHz on the GPU, and 1500 MHz on the 2048 MB of GDDR5 RAM. It features 1344 SPUs as well as 112 Texture Address Units and 24 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 550 Ti 116 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 34 Watts (29%)

Memory Bandwidth

Theoretically, the GeForce GTX 660 Ti should perform much faster than the GeForce GTX 550 Ti in general. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce GTX 550 Ti 98496 MB/sec
Difference: 45504 (46%)

Texel Rate

The GeForce GTX 660 Ti is a lot (approximately 256%) more effective at texture filtering than the GeForce GTX 550 Ti. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 73680 (256%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce GTX 660 Ti is the winner, but only just. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce GTX 550 Ti 21600 Mpixels/sec
Difference: 360 (2%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 550 Ti

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 550 Ti GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year March 2011 August 2012
Code Name GF116 GK104
Memory 1024 MB 2048 MB
Core Speed 900 MHz 915 MHz
Memory Speed 4104 MHz 6000 MHz
Power (Max TDP) 116 watts 150 watts
Bandwidth 98496 MB/sec 144000 MB/sec
Texel Rate 28800 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 21960 Mpixels/sec
Unified Shaders 192 1344
Texture Mapping Units 32 112
Render Output Units 24 24
Bus Type GDDR5 GDDR5
Bus Width 192-bit 192-bit
Fab Process 40 nm 28 nm
Transistors 1170 million 3540 million
Bus PCIe 2.1 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in megabytes per second) that can be moved across the external memory interface within a second. It is worked out by multiplying the interface width by its memory clock speed. In the case of DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total texture units by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly record to the local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]