Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 660 Ti

Intro

The GeForce GT 640 DDR3 features a GPU core clock speed of 900 MHz, and the 2048 MB of DDR3 memory runs at 1782 MHz through a 128-bit bus. It also is made up of 384 Stream Processors, 32 Texture Address Units, and 16 Raster Operation Units.

Compare all of that to the GeForce GTX 660 Ti, which comes with GPU core speed of 915 MHz, and 2048 MB of GDDR5 memory set to run at 1500 MHz through a 192-bit bus. It also is comprised of 1344 Stream Processors, 112 Texture Address Units, and 24 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 85 Watts (131%)

Memory Bandwidth

Theoretically, the GeForce GTX 660 Ti should be much faster than the GeForce GT 640 DDR3 overall. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 86976 (153%)

Texel Rate

The GeForce GTX 660 Ti will be quite a bit (approximately 256%) faster with regards to AF than the GeForce GT 640 DDR3. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 73680 (256%)

Pixel Rate

The GeForce GTX 660 Ti will be quite a bit (approximately 53%) more effective at full screen anti-aliasing than the GeForce GT 640 DDR3, and also should be capable of handling higher screen resolutions better. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 7560 (53%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 640 DDR3

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 640 DDR3 GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year June 2012 August 2012
Code Name GK107 GK104
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 900 MHz 915 MHz
Shader Speed 900 MHz 915 MHz
Memory Speed 1782 MHz (3564 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 384 1344
Texture Mapping Units 32 112
Render Output Units 16 24
Bus Type DDR3 GDDR5
Bus Width 128-bit 192-bit
DirectX Version DirectX 11.0 DirectX 11.0
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 65 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 57024 MB/sec 144000 MB/sec
Texel Rate 28800 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 21960 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (measured in megabytes per second) that can be moved past the external memory interface in one second. It's worked out by multiplying the card's interface width by the speed of its memory. If the card has DDR type RAM, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This number is worked out by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to its local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree