Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 660 Ti

Intro

The GeForce GT 640 DDR3 uses a 28 nm design. nVidia has set the core speed at 900 MHz. The DDR3 RAM runs at a speed of 1782 MHz on this specific card. It features 384 SPUs along with 32 TAUs and 16 Rasterization Operator Units.

Compare those specifications to the GeForce GTX 660 Ti, which has a GPU core clock speed of 915 MHz, and 2048 MB of GDDR5 memory set to run at 1500 MHz through a 192-bit bus. It also is made up of 1344 SPUs, 112 Texture Address Units, and 24 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 85 Watts (131%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 660 Ti should be a lot faster than the GeForce GT 640 DDR3 in general. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 86976 (153%)

Texel Rate

The GeForce GTX 660 Ti will be much (approximately 256%) more effective at AF than the GeForce GT 640 DDR3. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 73680 (256%)

Pixel Rate

The GeForce GTX 660 Ti will be much (more or less 53%) more effective at FSAA than the GeForce GT 640 DDR3, and should be able to handle higher resolutions without losing too much performance. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 7560 (53%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 640 DDR3

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year June 2012 August 2012
Code Name GK107 GK104
Memory 2048 MB 2048 MB
Core Speed 900 MHz 915 MHz
Memory Speed 3564 MHz 6000 MHz
Power (Max TDP) 65 watts 150 watts
Bandwidth 57024 MB/sec 144000 MB/sec
Texel Rate 28800 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 21960 Mpixels/sec
Unified Shaders 384 1344
Texture Mapping Units 32 112
Render Output Units 16 24
Bus Type DDR3 GDDR5
Bus Width 128-bit 192-bit
Fab Process 28 nm 28 nm
Transistors 1300 million 3540 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.0 DirectX 11.0
OpenGL Version OpenGL 4.2 OpenGL 4.3

Memory Bandwidth: Bandwidth is the max amount of information (measured in MB per second) that can be transferred across the external memory interface in one second. The number is calculated by multiplying the card's interface width by its memory clock speed. If the card has DDR memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to its local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]