Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs GeForce GT 640 DDR3

Intro

The GeForce 9800 GT 1GB comes with a core clock speed of 600 MHz and a GDDR3 memory frequency of 900 MHz. It also uses a 256-bit bus, and makes use of a 65/55 nm design. It features 112 SPUs, 56 Texture Address Units, and 16 Raster Operation Units.

Compare all that to the GeForce GT 640 DDR3, which comes with GPU clock speed of 900 MHz, and 2048 MB of DDR3 RAM running at 1782 MHz through a 128-bit bus. It also is made up of 384 Stream Processors, 32 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce 9800 GT 1GB 105 Watts
Difference: 40 Watts (62%)

Memory Bandwidth

As far as performance goes, the GeForce 9800 GT 1GB should in theory be a bit superior to the GeForce GT 640 DDR3 in general. (explain)

GeForce 9800 GT 1GB 57600 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 576 (1%)

Texel Rate

The GeForce 9800 GT 1GB should be a little bit (more or less 17%) more effective at anisotropic filtering than the GeForce GT 640 DDR3. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 4800 (17%)

Pixel Rate

The GeForce GT 640 DDR3 is much (about 50%) better at AA than the GeForce 9800 GT 1GB, and should be able to handle higher screen resolutions more effectively. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
GeForce 9800 GT 1GB 9600 Mpixels/sec
Difference: 4800 (50%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 1GB

Amazon.com

GeForce GT 640 DDR3

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 1GB GeForce GT 640 DDR3
Manufacturer nVidia nVidia
Year July 2008 June 2012
Code Name G92a/b GK107
Memory 1024 MB 2048 MB
Core Speed 600 MHz 900 MHz
Memory Speed 1800 MHz 3564 MHz
Power (Max TDP) 105 watts 65 watts
Bandwidth 57600 MB/sec 57024 MB/sec
Texel Rate 33600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 14400 Mpixels/sec
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 DDR3
Bus Width 256-bit 128-bit
Fab Process 65/55 nm 28 nm
Transistors 754 million 1300 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Bandwidth is the max amount of information (counted in MB per second) that can be moved past the external memory interface within a second. It is calculated by multiplying the card's interface width by its memory speed. If it uses DDR RAM, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This number is calculated by multiplying the total number of texture units by the core clock speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly record to the local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]