Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs GeForce GT 640 DDR3

Intro

The GeForce 9800 GT 1GB features a GPU clock speed of 600 MHz, and the 1024 MB of GDDR3 memory is set to run at 900 MHz through a 256-bit bus. It also is comprised of 112 Stream Processors, 56 TAUs, and 16 Raster Operation Units.

Compare all that to the GeForce GT 640 DDR3, which uses a 28 nm design. nVidia has clocked the core frequency at 900 MHz. The DDR3 memory runs at a speed of 1782 MHz on this card. It features 384 SPUs as well as 32 TAUs and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce 9800 GT 1GB 105 Watts
Difference: 40 Watts (62%)

Memory Bandwidth

Theoretically speaking, the GeForce 9800 GT 1GB should be a small bit faster than the GeForce GT 640 DDR3 in general. (explain)

GeForce 9800 GT 1GB 57600 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 576 (1%)

Texel Rate

The GeForce 9800 GT 1GB should be just a bit (approximately 17%) faster with regards to anisotropic filtering than the GeForce GT 640 DDR3. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 4800 (17%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GT 640 DDR3 is the winner, by far. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
GeForce 9800 GT 1GB 9600 Mpixels/sec
Difference: 4800 (50%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GT 1GB

Amazon.com

GeForce GT 640 DDR3

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GT 1GB GeForce GT 640 DDR3
Manufacturer nVidia nVidia
Year July 2008 June 2012
Code Name G92a/b GK107
Fab Process 65/55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 600 MHz 900 MHz
Shader Speed 1500 MHz 900 MHz
Memory Speed 900 MHz (1800 MHz effective) 1782 MHz (3564 MHz effective)
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 DDR3
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 105 watts 65 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 57024 MB/sec
Texel Rate 33600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 14400 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of megabytes per second) that can be moved over the external memory interface within a second. It is calculated by multiplying the card's interface width by its memory speed. In the case of DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree