Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs Radeon HD 4850 2GB

Intro

The GeForce GT 640 DDR3 makes use of a 28 nm design. nVidia has set the core speed at 900 MHz. The DDR3 memory works at a speed of 1782 MHz on this card. It features 384 SPUs as well as 32 TAUs and 16 Rasterization Operator Units.

Compare all of that to the Radeon HD 4850 2GB, which uses a 55 nm design. AMD has clocked the core frequency at 625 MHz. The GDDR4 RAM works at a frequency of 993 MHz on this particular model. It features 800(160x5) SPUs along with 40 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
Radeon HD 4850 2GB 110 Watts
Difference: 45 Watts (69%)

Memory Bandwidth

The Radeon HD 4850 2GB should in theory be a small bit faster than the GeForce GT 640 DDR3 in general. (explain)

Radeon HD 4850 2GB 63552 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 6528 (11%)

Texel Rate

The GeForce GT 640 DDR3 should be a small bit (more or less 15%) faster with regards to AF than the Radeon HD 4850 2GB. (explain)

GeForce GT 640 DDR3 28800 Mtexels/sec
Radeon HD 4850 2GB 25000 Mtexels/sec
Difference: 3800 (15%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce GT 640 DDR3 is superior to the Radeon HD 4850 2GB, by far. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
Radeon HD 4850 2GB 10000 Mpixels/sec
Difference: 4400 (44%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 640 DDR3

Radeon HD 4850 2GB

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 Radeon HD 4850 2GB
Manufacturer nVidia AMD
Year June 2012 Jun 25, 2008
Code Name GK107 RV770 PRO
Memory 2048 MB 2048 MB
Core Speed 900 MHz 625 MHz
Memory Speed 3564 MHz 1986 MHz
Power (Max TDP) 65 watts 110 watts
Bandwidth 57024 MB/sec 63552 MB/sec
Texel Rate 28800 Mtexels/sec 25000 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 10000 Mpixels/sec
Unified Shaders 384 800(160x5)
Texture Mapping Units 32 40
Render Output Units 16 16
Bus Type DDR3 GDDR4
Bus Width 128-bit 256-bit
Fab Process 28 nm 55 nm
Transistors 1300 million 956 million
Bus PCIe 3.0 x16 PCIe 2.0 x16
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.2 OpenGL 3.0

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in MB per second) that can be moved over the external memory interface within a second. The number is calculated by multiplying the bus width by its memory speed. If the card has DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

GeForce GT 640 DDR3

Radeon HD 4850 2GB

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti-Spam by WP-SpamShield


[X]
[X]