Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs Radeon HD 4850 2GB

Intro

The GeForce GT 640 DDR3 has core speeds of 900 MHz on the GPU, and 1782 MHz on the 2048 MB of DDR3 RAM. It features 384 SPUs along with 32 TAUs and 16 ROPs.

Compare that to the Radeon HD 4850 2GB, which has a clock speed of 625 MHz and a GDDR4 memory speed of 993 MHz. It also makes use of a 256-bit memory bus, and uses a 55 nm design. It is made up of 800(160x5) SPUs, 40 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
Radeon HD 4850 2GB 110 Watts
Difference: 45 Watts (69%)

Memory Bandwidth

As far as performance goes, the Radeon HD 4850 2GB should theoretically be a little bit better than the GeForce GT 640 DDR3 in general. (explain)

Radeon HD 4850 2GB 63552 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 6528 (11%)

Texel Rate

The GeForce GT 640 DDR3 will be a bit (more or less 15%) faster with regards to texture filtering than the Radeon HD 4850 2GB. (explain)

GeForce GT 640 DDR3 28800 Mtexels/sec
Radeon HD 4850 2GB 25000 Mtexels/sec
Difference: 3800 (15%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce GT 640 DDR3 is a better choice, and very much so. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
Radeon HD 4850 2GB 10000 Mpixels/sec
Difference: 4400 (44%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 640 DDR3

Amazon.com

Radeon HD 4850 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 Radeon HD 4850 2GB
Manufacturer nVidia AMD
Year June 2012 Jun 25, 2008
Code Name GK107 RV770 PRO
Memory 2048 MB 2048 MB
Core Speed 900 MHz 625 MHz
Memory Speed 3564 MHz 1986 MHz
Power (Max TDP) 65 watts 110 watts
Bandwidth 57024 MB/sec 63552 MB/sec
Texel Rate 28800 Mtexels/sec 25000 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 10000 Mpixels/sec
Unified Shaders 384 800(160x5)
Texture Mapping Units 32 40
Render Output Units 16 16
Bus Type DDR3 GDDR4
Bus Width 128-bit 256-bit
Fab Process 28 nm 55 nm
Transistors 1300 million 956 million
Bus PCIe 3.0 x16 PCIe 2.0 x16
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.2 OpenGL 3.0

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of megabytes per second) that can be transported over the external memory interface in a second. It's calculated by multiplying the card's bus width by its memory clock speed. In the case of DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly write to the local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]