Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs Radeon HD 5850

Intro

The GeForce GT 640 DDR3 comes with core speeds of 900 MHz on the GPU, and 1782 MHz on the 2048 MB of DDR3 memory. It features 384 SPUs as well as 32 TAUs and 16 ROPs.

Compare those specifications to the Radeon HD 5850, which features a core clock frequency of 725 MHz and a GDDR5 memory speed of 1000 MHz. It also uses a 256-bit memory bus, and makes use of a 40 nm design. It is comprised of 1440(288x5) SPUs, 72 Texture Address Units, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
Radeon HD 5850 151 Watts
Difference: 86 Watts (132%)

Memory Bandwidth

The Radeon HD 5850 should theoretically be quite a bit faster than the GeForce GT 640 DDR3 in general. (explain)

Radeon HD 5850 128000 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 70976 (124%)

Texel Rate

The Radeon HD 5850 is a lot (approximately 81%) more effective at AF than the GeForce GT 640 DDR3. (explain)

Radeon HD 5850 52200 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 23400 (81%)

Pixel Rate

The Radeon HD 5850 should be a lot (approximately 61%) better at AA than the GeForce GT 640 DDR3, and will be capable of handling higher screen resolutions without slowing down too much. (explain)

Radeon HD 5850 23200 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 8800 (61%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 640 DDR3

Amazon.com

Radeon HD 5850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 640 DDR3 Radeon HD 5850
Manufacturer nVidia AMD
Year June 2012 September 30, 2009
Code Name GK107 Cypress PRO
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 2048 MB 1024 MB
Core Speed 900 MHz 725 MHz
Shader Speed 900 MHz (N/A) MHz
Memory Speed 1782 MHz (3564 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 384 1440(288x5)
Texture Mapping Units 32 72
Render Output Units 16 32
Bus Type DDR3 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 3.2
Power (Max TDP) 65 watts 151 watts
Shader Model 5.0 5.0
Bandwidth 57024 MB/sec 128000 MB/sec
Texel Rate 28800 Mtexels/sec 52200 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 23200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in MB per second) that can be transported past the external memory interface in a second. It is worked out by multiplying the bus width by its memory speed. If it uses DDR type RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total amount of texture units of the card by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly write to its local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the number of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing