Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs Radeon HD 5850

Intro

The GeForce GT 640 DDR3 makes use of a 28 nm design. nVidia has clocked the core frequency at 900 MHz. The DDR3 memory is set to run at a speed of 1782 MHz on this specific model. It features 384 SPUs along with 32 TAUs and 16 Rasterization Operator Units.

Compare those specifications to the Radeon HD 5850, which features core speeds of 725 MHz on the GPU, and 1000 MHz on the 1024 MB of GDDR5 memory. It features 1440(288x5) SPUs along with 72 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
Radeon HD 5850 151 Watts
Difference: 86 Watts (132%)

Memory Bandwidth

As far as performance goes, the Radeon HD 5850 should theoretically be a lot better than the GeForce GT 640 DDR3 overall. (explain)

Radeon HD 5850 128000 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 70976 (124%)

Texel Rate

The Radeon HD 5850 should be quite a bit (more or less 81%) better at anisotropic filtering than the GeForce GT 640 DDR3. (explain)

Radeon HD 5850 52200 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 23400 (81%)

Pixel Rate

The Radeon HD 5850 will be quite a bit (more or less 61%) faster with regards to full screen anti-aliasing than the GeForce GT 640 DDR3, and should be able to handle higher screen resolutions without losing too much performance. (explain)

Radeon HD 5850 23200 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 8800 (61%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 640 DDR3

Amazon.com

Radeon HD 5850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 640 DDR3 Radeon HD 5850
Manufacturer nVidia AMD
Year June 2012 September 30, 2009
Code Name GK107 Cypress PRO
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 2048 MB 1024 MB
Core Speed 900 MHz 725 MHz
Shader Speed 900 MHz (N/A) MHz
Memory Speed 1782 MHz (3564 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 384 1440(288x5)
Texture Mapping Units 32 72
Render Output Units 16 32
Bus Type DDR3 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 3.2
Power (Max TDP) 65 watts 151 watts
Shader Model 5.0 5.0
Bandwidth 57024 MB/sec 128000 MB/sec
Texel Rate 28800 Mtexels/sec 52200 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 23200 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (measured in megabytes per second) that can be transported over the external memory interface within a second. It is worked out by multiplying the bus width by the speed of its memory. If it uses DDR type memory, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree