Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 580 3GB

Intro

The GeForce GT 640 DDR3 uses a 28 nm design. nVidia has clocked the core speed at 900 MHz. The DDR3 memory is set to run at a speed of 1782 MHz on this particular model. It features 384 SPUs along with 32 Texture Address Units and 16 ROPs.

Compare all that to the GeForce GTX 580 3GB, which comes with a clock frequency of 772 MHz and a GDDR5 memory speed of 1002 MHz. It also features a 384-bit bus, and uses a 40 nm design. It is comprised of 512 SPUs, 64 Texture Address Units, and 48 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 580 3GB 244 Watts
Difference: 179 Watts (275%)

Memory Bandwidth

Performance-wise, the GeForce GTX 580 3GB should theoretically be much superior to the GeForce GT 640 DDR3 in general. (explain)

GeForce GTX 580 3GB 192384 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 135360 (237%)

Texel Rate

The GeForce GTX 580 3GB is quite a bit (approximately 72%) better at anisotropic filtering than the GeForce GT 640 DDR3. (explain)

GeForce GTX 580 3GB 49408 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 20608 (72%)

Pixel Rate

The GeForce GTX 580 3GB should be quite a bit (more or less 157%) more effective at anti-aliasing than the GeForce GT 640 DDR3, and able to handle higher screen resolutions more effectively. (explain)

GeForce GTX 580 3GB 37056 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 22656 (157%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 640 DDR3

Amazon.com

GeForce GTX 580 3GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 GeForce GTX 580 3GB
Manufacturer nVidia nVidia
Year June 2012 November 2010
Code Name GK107 GF110
Memory 2048 MB 3072 MB
Core Speed 900 MHz 772 MHz
Memory Speed 3564 MHz 4008 MHz
Power (Max TDP) 65 watts 244 watts
Bandwidth 57024 MB/sec 192384 MB/sec
Texel Rate 28800 Mtexels/sec 49408 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 37056 Mpixels/sec
Unified Shaders 384 512
Texture Mapping Units 32 64
Render Output Units 16 48
Bus Type DDR3 GDDR5
Bus Width 128-bit 384-bit
Fab Process 28 nm 40 nm
Transistors 1300 million 3000 million
Bus PCIe 3.0 x16 PCIe x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the maximum amount of information (measured in MB per second) that can be moved past the external memory interface within a second. The number is worked out by multiplying the bus width by the speed of its memory. If it uses DDR memory, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This number is calculated by multiplying the total texture units by the core clock speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]