Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 580 3GB

Intro

The GeForce GT 640 DDR3 makes use of a 28 nm design. nVidia has set the core frequency at 900 MHz. The DDR3 RAM is set to run at a speed of 1782 MHz on this model. It features 384 SPUs along with 32 Texture Address Units and 16 Rasterization Operator Units.

Compare those specifications to the GeForce GTX 580 3GB, which features GPU core speed of 772 MHz, and 3072 MB of GDDR5 memory running at 1002 MHz through a 384-bit bus. It also features 512 SPUs, 64 TAUs, and 48 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 580 3GB 244 Watts
Difference: 179 Watts (275%)

Memory Bandwidth

In theory, the GeForce GTX 580 3GB should perform a lot faster than the GeForce GT 640 DDR3 in general. (explain)

GeForce GTX 580 3GB 192384 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 135360 (237%)

Texel Rate

The GeForce GTX 580 3GB should be much (more or less 72%) more effective at texture filtering than the GeForce GT 640 DDR3. (explain)

GeForce GTX 580 3GB 49408 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 20608 (72%)

Pixel Rate

The GeForce GTX 580 3GB will be much (more or less 157%) more effective at full screen anti-aliasing than the GeForce GT 640 DDR3, and should be able to handle higher resolutions without slowing down too much. (explain)

GeForce GTX 580 3GB 37056 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 22656 (157%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 640 DDR3

Amazon.com

GeForce GTX 580 3GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 640 DDR3 GeForce GTX 580 3GB
Manufacturer nVidia nVidia
Year June 2012 November 2010
Code Name GK107 GF110
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe x16
Memory 2048 MB 3072 MB
Core Speed 900 MHz 772 MHz
Shader Speed 900 MHz 1544 MHz
Memory Speed 1782 MHz (3564 MHz effective) 1002 MHz (4008 MHz effective)
Unified Shaders 384 512
Texture Mapping Units 32 64
Render Output Units 16 48
Bus Type DDR3 GDDR5
Bus Width 128-bit 384-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1
Power (Max TDP) 65 watts 244 watts
Shader Model 5.0 5.0
Bandwidth 57024 MB/sec 192384 MB/sec
Texel Rate 28800 Mtexels/sec 49408 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 37056 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (measured in MB per second) that can be transported past the external memory interface in a second. The number is calculated by multiplying the card's interface width by its memory speed. If the card has DDR RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree