Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs Geforce GTX 690

Intro

The GeForce GTX 560 Ti has a GPU core speed of 822 MHz, and the 1024 MB of GDDR5 memory is set to run at 1002 MHz through a 256-bit bus. It also features 384 SPUs, 64 TAUs, and 32 Raster Operation Units.

Compare those specs to the Geforce GTX 690, which comes with a GPU core clock speed of 915 MHz, and 2048 MB of GDDR5 RAM set to run at 1502 MHz through a 256-bit bus. It also is made up of 1536 SPUs, 128 Texture Address Units, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 Ti 170 Watts
Geforce GTX 690 300 Watts
Difference: 130 Watts (76%)

Memory Bandwidth

Theoretically speaking, the Geforce GTX 690 should perform quite a bit faster than the GeForce GTX 560 Ti overall. (explain)

Geforce GTX 690 384512 MB/sec
GeForce GTX 560 Ti 128256 MB/sec
Difference: 256256 (200%)

Texel Rate

The Geforce GTX 690 should be quite a bit (about 345%) more effective at AF than the GeForce GTX 560 Ti. (explain)

Geforce GTX 690 234240 Mtexels/sec
GeForce GTX 560 Ti 52608 Mtexels/sec
Difference: 181632 (345%)

Pixel Rate

The Geforce GTX 690 should be a lot (about 123%) better at AA than the GeForce GTX 560 Ti, and should be capable of handling higher screen resolutions without slowing down too much. (explain)

Geforce GTX 690 58560 Mpixels/sec
GeForce GTX 560 Ti 26304 Mpixels/sec
Difference: 32256 (123%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

One or more cards in this comparison are multi-core. This means that their bandwidth, texel and pixel rates are theoretically doubled - this does not mean the card will actually perform twice as fast, but only that it should in theory be able to. Actual game benchmarks will give a more accurate idea of what it's capable of.

Price Comparison

GeForce GTX 560 Ti

Amazon.com

Geforce GTX 690

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 560 Ti Geforce GTX 690
Manufacturer nVidia nVidia
Year January 2011 April 2012
Code Name GF114 GK104
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB (x2)
Core Speed 822 MHz 915 MHz (x2)
Shader Speed 1645 MHz 915 MHz (x2)
Memory Speed 1002 MHz (4008 MHz effective) 1502 MHz (6008 MHz effective) (x2)
Unified Shaders 384 1536 (x2)
Texture Mapping Units 64 128 (x2)
Render Output Units 32 32 (x2)
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit (x2)
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 170 watts 300 watts
Shader Model 5.0 5.0
Bandwidth 128256 MB/sec 384512 MB/sec
Texel Rate 52608 Mtexels/sec 234240 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 58560 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in megabytes per second) that can be transported over the external memory interface within a second. It's worked out by multiplying the interface width by the speed of its memory. If it uses DDR RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This is worked out by multiplying the total texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree