Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 570 vs Geforce GTX 670

Intro

The GeForce GTX 570 comes with a clock speed of 732 MHz and a GDDR5 memory frequency of 950 MHz. It also features a 320-bit memory bus, and uses a 40 nm design. It is comprised of 480 SPUs, 60 Texture Address Units, and 40 Raster Operation Units.

Compare those specifications to the Geforce GTX 670, which uses a 28 nm design. nVidia has set the core frequency at 915 MHz. The GDDR5 memory runs at a frequency of 1500 MHz on this specific card. It features 1344 SPUs as well as 112 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Geforce GTX 670 170 Watts
GeForce GTX 570 219 Watts
Difference: 49 Watts (29%)

Memory Bandwidth

In theory, the Geforce GTX 670 should perform much faster than the GeForce GTX 570 in general. (explain)

Geforce GTX 670 192000 MB/sec
GeForce GTX 570 152000 MB/sec
Difference: 40000 (26%)

Texel Rate

The Geforce GTX 670 will be much (more or less 133%) faster with regards to texture filtering than the GeForce GTX 570. (explain)

Geforce GTX 670 102480 Mtexels/sec
GeForce GTX 570 43920 Mtexels/sec
Difference: 58560 (133%)

Pixel Rate

Both cards have the exact same pixel rate, so theoretically they should perform equally good at at anti-aliasing, and be capable of handling the same screen resolutions. (explain)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 570

Amazon.com

Geforce GTX 670

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 570 Geforce GTX 670
Manufacturer nVidia nVidia
Year December 2010 May 2012
Code Name GF110 GK104
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1280 MB 2048 MB
Core Speed 732 MHz 915 MHz
Shader Speed 1464 MHz 915 MHz
Memory Speed 950 MHz (3800 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 480 1344
Texture Mapping Units 60 112
Render Output Units 40 32
Bus Type GDDR5 GDDR5
Bus Width 320-bit 256-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 219 watts 170 watts
Shader Model 5.0 5.0
Bandwidth 152000 MB/sec 192000 MB/sec
Texel Rate 43920 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 29280 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (in units of megabytes per second) that can be moved past the external memory interface in one second. It is worked out by multiplying the interface width by the speed of its memory. In the case of DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This number is worked out by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly record to its local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree