Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GTX vs Geforce GTX 680

Intro

The GeForce 8800 GTX comes with a clock speed of 575 MHz and a GDDR3 memory frequency of 900 MHz. It also uses a 384-bit bus, and makes use of a 90 nm design. It is comprised of 128 SPUs, 64 Texture Address Units, and 24 Raster Operation Units.

Compare all of that to the Geforce GTX 680, which comes with a GPU core clock speed of 1006 MHz, and 2048 MB of GDDR5 RAM set to run at 1502 MHz through a 256-bit bus. It also is comprised of 1536 SPUs, 128 TAUs, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8800 GTX 155 Watts
Geforce GTX 680 195 Watts
Difference: 40 Watts (26%)

Memory Bandwidth

Theoretically speaking, the Geforce GTX 680 will be 123% faster than the GeForce 8800 GTX in general, because of its higher data rate. (explain)

Geforce GTX 680 192256 MB/sec
GeForce 8800 GTX 86400 MB/sec
Difference: 105856 (123%)

Texel Rate

The Geforce GTX 680 will be much (about 250%) better at anisotropic filtering than the GeForce 8800 GTX. (explain)

Geforce GTX 680 128768 Mtexels/sec
GeForce 8800 GTX 36800 Mtexels/sec
Difference: 91968 (250%)

Pixel Rate

If using high levels of AA is important to you, then the Geforce GTX 680 is the winner, by far. (explain)

Geforce GTX 680 32192 Mpixels/sec
GeForce 8800 GTX 13800 Mpixels/sec
Difference: 18392 (133%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GTX

Amazon.com

Geforce GTX 680

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GTX Geforce GTX 680
Manufacturer nVidia nVidia
Year Nov 2006 March 2012
Code Name G80 GK104
Memory 768 MB 2048 MB
Core Speed 575 MHz 1006 MHz
Memory Speed 1800 MHz 6008 MHz
Power (Max TDP) 155 watts 195 watts
Bandwidth 86400 MB/sec 192256 MB/sec
Texel Rate 36800 Mtexels/sec 128768 Mtexels/sec
Pixel Rate 13800 Mpixels/sec 32192 Mpixels/sec
Unified Shaders 128 1536
Texture Mapping Units 64 128
Render Output Units 24 32
Bus Type GDDR3 GDDR5
Bus Width 384-bit 256-bit
Fab Process 90 nm 28 nm
Transistors 681 million 3540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of megabytes per second) that can be transported across the external memory interface within a second. The number is worked out by multiplying the card's bus width by its memory speed. If the card has DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This figure is worked out by multiplying the total texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly write to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]