Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GTX vs Geforce GTX 680

Intro

The GeForce 8800 GTX features a core clock speed of 575 MHz and a GDDR3 memory speed of 900 MHz. It also features a 384-bit memory bus, and uses a 90 nm design. It features 128 SPUs, 64 Texture Address Units, and 24 ROPs.

Compare that to the Geforce GTX 680, which uses a 28 nm design. nVidia has clocked the core frequency at 1006 MHz. The GDDR5 memory is set to run at a speed of 1502 MHz on this particular model. It features 1536 SPUs along with 128 TAUs and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8800 GTX 155 Watts
Geforce GTX 680 195 Watts
Difference: 40 Watts (26%)

Memory Bandwidth

The Geforce GTX 680 should theoretically perform a lot faster than the GeForce 8800 GTX overall. (explain)

Geforce GTX 680 192256 MB/sec
GeForce 8800 GTX 86400 MB/sec
Difference: 105856 (123%)

Texel Rate

The Geforce GTX 680 is a lot (about 250%) faster with regards to anisotropic filtering than the GeForce 8800 GTX. (explain)

Geforce GTX 680 128768 Mtexels/sec
GeForce 8800 GTX 36800 Mtexels/sec
Difference: 91968 (250%)

Pixel Rate

The Geforce GTX 680 should be a lot (more or less 133%) better at AA than the GeForce 8800 GTX, and should be capable of handling higher resolutions more effectively. (explain)

Geforce GTX 680 32192 Mpixels/sec
GeForce 8800 GTX 13800 Mpixels/sec
Difference: 18392 (133%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GTX

Amazon.com

Geforce GTX 680

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GTX Geforce GTX 680
Manufacturer nVidia nVidia
Year Nov 2006 March 2012
Code Name G80 GK104
Memory 768 MB 2048 MB
Core Speed 575 MHz 1006 MHz
Memory Speed 1800 MHz 6008 MHz
Power (Max TDP) 155 watts 195 watts
Bandwidth 86400 MB/sec 192256 MB/sec
Texel Rate 36800 Mtexels/sec 128768 Mtexels/sec
Pixel Rate 13800 Mpixels/sec 32192 Mpixels/sec
Unified Shaders 128 1536
Texture Mapping Units 64 128
Render Output Units 24 32
Bus Type GDDR3 GDDR5
Bus Width 384-bit 256-bit
Fab Process 90 nm 28 nm
Transistors 681 million 3540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of MB per second) that can be transferred across the external memory interface in one second. The number is worked out by multiplying the bus width by the speed of its memory. If the card has DDR RAM, the result should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]