Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 680 vs Radeon HD 5870

Intro

The Geforce GTX 680 comes with a clock frequency of 1006 MHz and a GDDR5 memory speed of 1502 MHz. It also features a 256-bit memory bus, and uses a 28 nm design. It is comprised of 1536 SPUs, 128 Texture Address Units, and 32 Raster Operation Units.

Compare those specifications to the Radeon HD 5870, which comes with clock speeds of 850 MHz on the GPU, and 1200 MHz on the 1024 MB of GDDR5 memory. It features 1600(320x5) SPUs as well as 80 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
Geforce GTX 680 195 Watts
Difference: 7 Watts (4%)

Memory Bandwidth

In theory, the Geforce GTX 680 should be 25% faster than the Radeon HD 5870 in general, due to its higher bandwidth. (explain)

Geforce GTX 680 192256 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 38656 (25%)

Texel Rate

The Geforce GTX 680 will be quite a bit (approximately 89%) more effective at AF than the Radeon HD 5870. (explain)

Geforce GTX 680 128768 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 60768 (89%)

Pixel Rate

If using high levels of AA is important to you, then the Geforce GTX 680 is a better choice, though not by far. (explain)

Geforce GTX 680 32192 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 4992 (18%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 680

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 680 Radeon HD 5870
Manufacturer nVidia AMD
Year March 2012 September 23, 2009
Code Name GK104 Cypress XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 2048 MB 1024 MB
Core Speed 1006 MHz 850 MHz
Shader Speed 1006 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 1536 1600(320x5)
Texture Mapping Units 128 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 3.2
Power (Max TDP) 195 watts 188 watts
Shader Model 5.0 5.0
Bandwidth 192256 MB/sec 153600 MB/sec
Texel Rate 128768 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 32192 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of megabytes per second) that can be moved past the external memory interface in one second. The number is worked out by multiplying the interface width by its memory clock speed. In the case of DDR RAM, the result should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly record to the local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing