Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 450 (OEM) vs Radeon HD 7870

Intro

The GeForce GT 450 (OEM) makes use of a 40 nm design. nVidia has clocked the core frequency at 790 MHz. The GDDR5 RAM runs at a frequency of 1000 MHz on this particular card. It features 144 SPUs along with 24 Texture Address Units and 24 ROPs.

Compare all of that to the Radeon HD 7870, which uses a 28 nm design. AMD has clocked the core frequency at 1000 MHz. The GDDR5 RAM runs at a speed of 1200 MHz on this specific card. It features 1280 SPUs as well as 80 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 450 (OEM) 106 Watts
Radeon HD 7870 175 Watts
Difference: 69 Watts (65%)

Memory Bandwidth

The Radeon HD 7870 should in theory be quite a bit faster than the GeForce GT 450 (OEM) overall. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GT 450 (OEM) 96000 MB/sec
Difference: 57600 (60%)

Texel Rate

The Radeon HD 7870 should be quite a bit (more or less 322%) more effective at AF than the GeForce GT 450 (OEM). (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GT 450 (OEM) 18960 Mtexels/sec
Difference: 61040 (322%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the Radeon HD 7870 is the winner, by far. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GT 450 (OEM) 18960 Mpixels/sec
Difference: 13040 (69%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 450 (OEM)

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 450 (OEM) Radeon HD 7870
Manufacturer nVidia AMD
Year October 2010 March 2012
Code Name GF106 Pitcairn XT
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1536 MB 2048 MB
Core Speed 790 MHz 1000 MHz
Shader Speed 1580 MHz (N/A) MHz
Memory Speed 1000 MHz (4000 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 144 1280
Texture Mapping Units 24 80
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 106 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 96000 MB/sec 153600 MB/sec
Texel Rate 18960 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 18960 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (counted in megabytes per second) that can be moved past the external memory interface in one second. The number is calculated by multiplying the interface width by its memory clock speed. In the case of DDR type RAM, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This number is worked out by multiplying the total texture units of the card by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly record to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing