Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 450 (OEM) vs Radeon HD 7870

Intro

The GeForce GT 450 (OEM) features a core clock frequency of 790 MHz and a GDDR5 memory frequency of 1000 MHz. It also features a 192-bit memory bus, and makes use of a 40 nm design. It features 144 SPUs, 24 Texture Address Units, and 24 ROPs.

Compare that to the Radeon HD 7870, which features GPU clock speed of 1000 MHz, and 2048 MB of GDDR5 RAM set to run at 1200 MHz through a 256-bit bus. It also is made up of 1280 SPUs, 80 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 450 (OEM) 106 Watts
Radeon HD 7870 175 Watts
Difference: 69 Watts (65%)

Memory Bandwidth

The Radeon HD 7870 should theoretically perform a lot faster than the GeForce GT 450 (OEM) in general. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GT 450 (OEM) 96000 MB/sec
Difference: 57600 (60%)

Texel Rate

The Radeon HD 7870 is much (approximately 322%) more effective at AF than the GeForce GT 450 (OEM). (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GT 450 (OEM) 18960 Mtexels/sec
Difference: 61040 (322%)

Pixel Rate

The Radeon HD 7870 is quite a bit (approximately 69%) better at anti-aliasing than the GeForce GT 450 (OEM), and also will be capable of handling higher resolutions more effectively. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GT 450 (OEM) 18960 Mpixels/sec
Difference: 13040 (69%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 450 (OEM)

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 450 (OEM) Radeon HD 7870
Manufacturer nVidia AMD
Year October 2010 March 2012
Code Name GF106 Pitcairn XT
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1536 MB 2048 MB
Core Speed 790 MHz 1000 MHz
Shader Speed 1580 MHz (N/A) MHz
Memory Speed 1000 MHz (4000 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 144 1280
Texture Mapping Units 24 80
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 106 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 96000 MB/sec 153600 MB/sec
Texel Rate 18960 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 18960 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of MB per second) that can be transported past the external memory interface within a second. The number is calculated by multiplying the card's bus width by its memory speed. If the card has DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree