Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 580 vs Radeon HD 7870

Intro

The GeForce GTX 580 features clock speeds of 772 MHz on the GPU, and 1002 MHz on the 1536 MB of GDDR5 RAM. It features 512 SPUs along with 64 TAUs and 48 ROPs.

Compare that to the Radeon HD 7870, which comes with a clock frequency of 1000 MHz and a GDDR5 memory speed of 1200 MHz. It also features a 256-bit bus, and makes use of a 28 nm design. It is made up of 1280 SPUs, 80 Texture Address Units, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7870 175 Watts
GeForce GTX 580 244 Watts
Difference: 69 Watts (39%)

Memory Bandwidth

In theory, the GeForce GTX 580 should be 25% quicker than the Radeon HD 7870 overall, due to its greater data rate. (explain)

GeForce GTX 580 192384 MB/sec
Radeon HD 7870 153600 MB/sec
Difference: 38784 (25%)

Texel Rate

The Radeon HD 7870 should be quite a bit (approximately 62%) faster with regards to anisotropic filtering than the GeForce GTX 580. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 580 49408 Mtexels/sec
Difference: 30592 (62%)

Pixel Rate

The GeForce GTX 580 will be a small bit (approximately 16%) more effective at anti-aliasing than the Radeon HD 7870, and able to handle higher resolutions while still performing well. (explain)

GeForce GTX 580 37056 Mpixels/sec
Radeon HD 7870 32000 Mpixels/sec
Difference: 5056 (16%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 580

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 580 Radeon HD 7870
Manufacturer nVidia AMD
Year November 2010 March 2012
Code Name GF110 Pitcairn XT
Memory 1536 MB 2048 MB
Core Speed 772 MHz 1000 MHz
Memory Speed 4008 MHz 4800 MHz
Power (Max TDP) 244 watts 175 watts
Bandwidth 192384 MB/sec 153600 MB/sec
Texel Rate 49408 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 37056 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 512 1280
Texture Mapping Units 64 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 2800 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be transferred over the external memory interface within a second. The number is worked out by multiplying the bus width by its memory speed. If the card has DDR RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This number is calculated by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly record to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]