Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 560 vs Radeon HD 7870

Intro

The GeForce GTX 560 uses a 40 nm design. nVidia has clocked the core speed at 810 MHz. The GDDR5 memory is set to run at a speed of 1001 MHz on this model. It features 336 SPUs as well as 56 Texture Address Units and 32 ROPs.

Compare those specs to the Radeon HD 7870, which comes with GPU clock speed of 1000 MHz, and 2048 MB of GDDR5 memory set to run at 1200 MHz through a 256-bit bus. It also is comprised of 1280 SPUs, 80 Texture Address Units, and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
Radeon HD 7870 175 Watts
Difference: 25 Watts (17%)

Memory Bandwidth

In theory, the Radeon HD 7870 is 20% quicker than the GeForce GTX 560 overall, because of its higher data rate. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 25472 (20%)

Texel Rate

The Radeon HD 7870 should be a lot (about 76%) faster with regards to anisotropic filtering than the GeForce GTX 560. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 560 45360 Mtexels/sec
Difference: 34640 (76%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the Radeon HD 7870 is superior to the GeForce GTX 560, and very much so. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 6080 (23%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 560

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 560 Radeon HD 7870
Manufacturer nVidia AMD
Year May 2011 March 2012
Code Name GF114 Pitcairn XT
Memory 1024 MB 2048 MB
Core Speed 810 MHz 1000 MHz
Memory Speed 4004 MHz 4800 MHz
Power (Max TDP) 150 watts 175 watts
Bandwidth 128128 MB/sec 153600 MB/sec
Texel Rate 45360 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 25920 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 336 1280
Texture Mapping Units 56 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 1950 million 2800 million
Bus PCIe 2.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the largest amount of data (counted in megabytes per second) that can be moved past the external memory interface in one second. It is worked out by multiplying the card's interface width by the speed of its memory. If the card has DDR memory, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total texture units of the card by the core speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly write to the local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]