Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 560 vs Radeon HD 7870

Intro

The GeForce GTX 560 makes use of a 40 nm design. nVidia has clocked the core frequency at 810 MHz. The GDDR5 memory runs at a speed of 1001 MHz on this card. It features 336 SPUs along with 56 TAUs and 32 ROPs.

Compare all of that to the Radeon HD 7870, which has a clock frequency of 1000 MHz and a GDDR5 memory speed of 1200 MHz. It also features a 256-bit bus, and uses a 28 nm design. It is comprised of 1280 SPUs, 80 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
Radeon HD 7870 175 Watts
Difference: 25 Watts (17%)

Memory Bandwidth

Performance-wise, the Radeon HD 7870 should theoretically be a bit superior to the GeForce GTX 560 overall. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 25472 (20%)

Texel Rate

The Radeon HD 7870 will be a lot (approximately 76%) more effective at anisotropic filtering than the GeForce GTX 560. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 560 45360 Mtexels/sec
Difference: 34640 (76%)

Pixel Rate

The Radeon HD 7870 should be quite a bit (more or less 23%) more effective at AA than the GeForce GTX 560, and should be able to handle higher screen resolutions better. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 6080 (23%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 560

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 560 Radeon HD 7870
Manufacturer nVidia AMD
Year May 2011 March 2012
Code Name GF114 Pitcairn XT
Fab Process 40 nm 28 nm
Bus PCIe 2.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 810 MHz 1000 MHz
Shader Speed 1600 MHz (N/A) MHz
Memory Speed 1001 MHz (4004 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 336 1280
Texture Mapping Units 56 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 150 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 128128 MB/sec 153600 MB/sec
Texel Rate 45360 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 25920 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (counted in megabytes per second) that can be transferred past the external memory interface in one second. It's calculated by multiplying the interface width by the speed of its memory. If the card has DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total texture units by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly write to the local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree