Compare any two graphics cards:
VS

GeForce GTX 560 vs Radeon HD 7870

Intro

The GeForce GTX 560 has a GPU clock speed of 810 MHz, and the 1024 MB of GDDR5 memory runs at 1001 MHz through a 256-bit bus. It also features 336 Stream Processors, 56 TAUs, and 32 ROPs.

Compare those specifications to the Radeon HD 7870, which uses a 28 nm design. AMD has clocked the core frequency at 1000 MHz. The GDDR5 RAM is set to run at a frequency of 1200 MHz on this model. It features 1280 SPUs along with 80 TAUs and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
Radeon HD 7870 175 Watts
Difference: 25 Watts (17%)

Memory Bandwidth

As far as performance goes, the Radeon HD 7870 should in theory be just a bit better than the GeForce GTX 560 overall. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 25472 (20%)

Texel Rate

The Radeon HD 7870 is much (more or less 76%) better at texture filtering than the GeForce GTX 560. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 560 45360 Mtexels/sec
Difference: 34640 (76%)

Pixel Rate

If using high levels of AA is important to you, then the Radeon HD 7870 is superior to the GeForce GTX 560, by far. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 6080 (23%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 560

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 560 Radeon HD 7870
Manufacturer nVidia AMD
Year May 2011 March 2012
Code Name GF114 Pitcairn XT
Fab Process 40 nm 28 nm
Bus PCIe 2.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 810 MHz 1000 MHz
Shader Speed 1600 MHz (N/A) MHz
Memory Speed 4004 MHz 4800 MHz
Unified Shaders 336 1280
Texture Mapping Units 56 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 150 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 128128 MB/sec 153600 MB/sec
Texel Rate 45360 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 25920 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of MB per second) that can be transported past the external memory interface within a second. It's worked out by multiplying the card's interface width by its memory speed. In the case of DDR RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed in one second. This number is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to its local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing