Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 560 vs Radeon HD 7870

Intro

The GeForce GTX 560 features a GPU core speed of 810 MHz, and the 1024 MB of GDDR5 memory runs at 1001 MHz through a 256-bit bus. It also is comprised of 336 SPUs, 56 Texture Address Units, and 32 Raster Operation Units.

Compare that to the Radeon HD 7870, which comes with GPU clock speed of 1000 MHz, and 2048 MB of GDDR5 RAM running at 1200 MHz through a 256-bit bus. It also features 1280 SPUs, 80 TAUs, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 150 Watts
Radeon HD 7870 175 Watts
Difference: 25 Watts (17%)

Memory Bandwidth

In theory, the Radeon HD 7870 should be a bit faster than the GeForce GTX 560 overall. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 560 128128 MB/sec
Difference: 25472 (20%)

Texel Rate

The Radeon HD 7870 should be quite a bit (approximately 76%) more effective at AF than the GeForce GTX 560. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 560 45360 Mtexels/sec
Difference: 34640 (76%)

Pixel Rate

The Radeon HD 7870 will be a lot (about 23%) better at FSAA than the GeForce GTX 560, and should be capable of handling higher resolutions without slowing down too much. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 560 25920 Mpixels/sec
Difference: 6080 (23%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 560

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 560 Radeon HD 7870
Manufacturer nVidia AMD
Year May 2011 March 2012
Code Name GF114 Pitcairn XT
Memory 1024 MB 2048 MB
Core Speed 810 MHz 1000 MHz
Memory Speed 4004 MHz 4800 MHz
Power (Max TDP) 150 watts 175 watts
Bandwidth 128128 MB/sec 153600 MB/sec
Texel Rate 45360 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 25920 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 336 1280
Texture Mapping Units 56 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 1950 million 2800 million
Bus PCIe 2.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be moved over the external memory interface in a second. The number is calculated by multiplying the card's interface width by its memory clock speed. In the case of DDR type memory, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly write to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]