Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs Radeon HD 7850

Intro

The GeForce 9800 GT 1GB features a core clock speed of 600 MHz and a GDDR3 memory frequency of 900 MHz. It also features a 256-bit memory bus, and makes use of a 65/55 nm design. It is comprised of 112 SPUs, 56 Texture Address Units, and 16 Raster Operation Units.

Compare all that to the Radeon HD 7850, which uses a 28 nm design. AMD has set the core speed at 860 MHz. The GDDR5 memory runs at a frequency of 1200 MHz on this particular model. It features 1024 SPUs along with 64 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9800 GT 1GB 105 Watts
Radeon HD 7850 130 Watts
Difference: 25 Watts (24%)

Memory Bandwidth

Performance-wise, the Radeon HD 7850 should theoretically be a lot superior to the GeForce 9800 GT 1GB in general. (explain)

Radeon HD 7850 153600 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 96000 (167%)

Texel Rate

The Radeon HD 7850 should be a lot (approximately 64%) better at AF than the GeForce 9800 GT 1GB. (explain)

Radeon HD 7850 55040 Mtexels/sec
GeForce 9800 GT 1GB 33600 Mtexels/sec
Difference: 21440 (64%)

Pixel Rate

The Radeon HD 7850 is quite a bit (more or less 187%) more effective at full screen anti-aliasing than the GeForce 9800 GT 1GB, and also should be able to handle higher resolutions while still performing well. (explain)

Radeon HD 7850 27520 Mpixels/sec
GeForce 9800 GT 1GB 9600 Mpixels/sec
Difference: 17920 (187%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GT 1GB

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GT 1GB Radeon HD 7850
Manufacturer nVidia AMD
Year July 2008 March 2012
Code Name G92a/b Pitcairn Pro
Fab Process 65/55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 600 MHz 860 MHz
Shader Speed 1500 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 112 1024
Texture Mapping Units 56 64
Render Output Units 16 32
Bus Type GDDR3 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 105 watts 130 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 153600 MB/sec
Texel Rate 33600 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 27520 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in megabytes per second) that can be transported across the external memory interface in one second. The number is worked out by multiplying the bus width by its memory clock speed. If it uses DDR type RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This is worked out by multiplying the total texture units of the card by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly record to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree