Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs Radeon HD 7850

Intro

The GeForce 9800 GT 1GB comes with a GPU clock speed of 600 MHz, and the 1024 MB of GDDR3 memory runs at 900 MHz through a 256-bit bus. It also features 112 SPUs, 56 TAUs, and 16 Raster Operation Units.

Compare all of that to the Radeon HD 7850, which has a core clock frequency of 860 MHz and a GDDR5 memory frequency of 1200 MHz. It also features a 256-bit bus, and uses a 28 nm design. It features 1024 SPUs, 64 TAUs, and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9800 GT 1GB 105 Watts
Radeon HD 7850 130 Watts
Difference: 25 Watts (24%)

Memory Bandwidth

The Radeon HD 7850 should theoretically perform quite a bit faster than the GeForce 9800 GT 1GB in general. (explain)

Radeon HD 7850 153600 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 96000 (167%)

Texel Rate

The Radeon HD 7850 will be quite a bit (approximately 64%) more effective at anisotropic filtering than the GeForce 9800 GT 1GB. (explain)

Radeon HD 7850 55040 Mtexels/sec
GeForce 9800 GT 1GB 33600 Mtexels/sec
Difference: 21440 (64%)

Pixel Rate

The Radeon HD 7850 should be a lot (about 187%) more effective at AA than the GeForce 9800 GT 1GB, and should be able to handle higher resolutions while still performing well. (explain)

Radeon HD 7850 27520 Mpixels/sec
GeForce 9800 GT 1GB 9600 Mpixels/sec
Difference: 17920 (187%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 1GB

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 1GB Radeon HD 7850
Manufacturer nVidia AMD
Year July 2008 March 2012
Code Name G92a/b Pitcairn Pro
Memory 1024 MB 2048 MB
Core Speed 600 MHz 860 MHz
Memory Speed 1800 MHz 4800 MHz
Power (Max TDP) 105 watts 130 watts
Bandwidth 57600 MB/sec 153600 MB/sec
Texel Rate 33600 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 27520 Mpixels/sec
Unified Shaders 112 1024
Texture Mapping Units 56 64
Render Output Units 16 32
Bus Type GDDR3 GDDR5
Bus Width 256-bit 256-bit
Fab Process 65/55 nm 28 nm
Transistors 754 million 2800 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of MB per second) that can be transported over the external memory interface within a second. It's worked out by multiplying the interface width by the speed of its memory. If the card has DDR RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]