Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs Radeon HD 7850

Intro

The GeForce 9800 GT 1GB uses a 65/55 nm design. nVidia has clocked the core speed at 600 MHz. The GDDR3 RAM runs at a speed of 900 MHz on this particular model. It features 112 SPUs along with 56 Texture Address Units and 16 ROPs.

Compare that to the Radeon HD 7850, which makes use of a 28 nm design. AMD has set the core frequency at 860 MHz. The GDDR5 RAM works at a frequency of 1200 MHz on this specific card. It features 1024 SPUs as well as 64 Texture Address Units and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9800 GT 1GB 105 Watts
Radeon HD 7850 130 Watts
Difference: 25 Watts (24%)

Memory Bandwidth

The Radeon HD 7850 should theoretically be quite a bit faster than the GeForce 9800 GT 1GB overall. (explain)

Radeon HD 7850 153600 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 96000 (167%)

Texel Rate

The Radeon HD 7850 will be quite a bit (more or less 64%) better at texture filtering than the GeForce 9800 GT 1GB. (explain)

Radeon HD 7850 55040 Mtexels/sec
GeForce 9800 GT 1GB 33600 Mtexels/sec
Difference: 21440 (64%)

Pixel Rate

If running with a high screen resolution is important to you, then the Radeon HD 7850 is the winner, by a large margin. (explain)

Radeon HD 7850 27520 Mpixels/sec
GeForce 9800 GT 1GB 9600 Mpixels/sec
Difference: 17920 (187%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 1GB

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 1GB Radeon HD 7850
Manufacturer nVidia AMD
Year July 2008 March 2012
Code Name G92a/b Pitcairn Pro
Memory 1024 MB 2048 MB
Core Speed 600 MHz 860 MHz
Memory Speed 1800 MHz 4800 MHz
Power (Max TDP) 105 watts 130 watts
Bandwidth 57600 MB/sec 153600 MB/sec
Texel Rate 33600 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 27520 Mpixels/sec
Unified Shaders 112 1024
Texture Mapping Units 56 64
Render Output Units 16 32
Bus Type GDDR3 GDDR5
Bus Width 256-bit 256-bit
Fab Process 65/55 nm 28 nm
Transistors 754 million 2800 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be transported over the external memory interface in one second. It's worked out by multiplying the card's interface width by the speed of its memory. If it uses DDR type RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly write to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]