Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 5770 vs Radeon HD 7850

Intro

The Radeon HD 5770 comes with a clock speed of 850 MHz and a GDDR5 memory frequency of 1200 MHz. It also uses a 128-bit memory bus, and uses a 40 nm design. It is made up of 800(160x5) SPUs, 40 TAUs, and 16 ROPs.

Compare that to the Radeon HD 7850, which makes use of a 28 nm design. ATi has set the core frequency at 860 MHz. The GDDR5 memory is set to run at a speed of 1200 MHz on this model. It features 1024 SPUs along with 64 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
Radeon HD 7850 130 Watts
Difference: 22 Watts (20%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7850 will be 100% faster than the Radeon HD 5770 overall, because of its higher bandwidth. (explain)

Radeon HD 7850 153600 MB/sec
Radeon HD 5770 76800 MB/sec
Difference: 76800 (100%)

Texel Rate

The Radeon HD 7850 will be much (about 62%) faster with regards to texture filtering than the Radeon HD 5770. (explain)

Radeon HD 7850 55040 Mtexels/sec
Radeon HD 5770 34000 Mtexels/sec
Difference: 21040 (62%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 7850 is a better choice, by far. (explain)

Radeon HD 7850 27520 Mpixels/sec
Radeon HD 5770 13600 Mpixels/sec
Difference: 13920 (102%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

Radeon HD 5770

Amazon.com

Other US-based stores

Radeon HD 7850

Amazon.com

Other US-based stores

Specifications

Model Radeon HD 5770 Radeon HD 7850
Manufacturer ATi ATi
Year October 13, 2009 March 2012
Code Name Juniper XT Pitcairn Pro
Fab Process 40 nm 28 nm
Bus PCIe 2.1 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 850 MHz 860 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 800(160x5) 1024
Texture Mapping Units 40 64
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 3.2 OpenGL 4.2
Power (Max TDP) 108 watts 130 watts
Shader Model 5.0 5.0
Bandwidth 76800 MB/sec 153600 MB/sec
Texel Rate 34000 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 13600 Mpixels/sec 27520 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in megabytes per second) that can be moved over the external memory interface in one second. It's worked out by multiplying the interface width by its memory clock speed. In the case of DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This number is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly write to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree