Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

A Question

Compare any two graphics cards:
VS

Radeon HD 5770 vs Radeon HD 7850

Intro

The Radeon HD 5770 comes with a GPU core clock speed of 850 MHz, and the 1024 MB of GDDR5 memory is set to run at 1200 MHz through a 128-bit bus. It also is made up of 800(160x5) Stream Processors, 40 TAUs, and 16 ROPs.

Compare all that to the Radeon HD 7850, which comes with a core clock speed of 860 MHz and a GDDR5 memory speed of 1200 MHz. It also uses a 256-bit memory bus, and makes use of a 28 nm design. It is made up of 1024 SPUs, 64 TAUs, and 32 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
Radeon HD 7850 130 Watts
Difference: 22 Watts (20%)

Memory Bandwidth

The Radeon HD 7850 should in theory be a lot faster than the Radeon HD 5770 overall. (explain)

Radeon HD 7850 153600 MB/sec
Radeon HD 5770 76800 MB/sec
Difference: 76800 (100%)

Texel Rate

The Radeon HD 7850 should be quite a bit (more or less 62%) better at anisotropic filtering than the Radeon HD 5770. (explain)

Radeon HD 7850 55040 Mtexels/sec
Radeon HD 5770 34000 Mtexels/sec
Difference: 21040 (62%)

Pixel Rate

The Radeon HD 7850 should be a lot (more or less 102%) better at full screen anti-aliasing than the Radeon HD 5770, and also will be able to handle higher resolutions without losing too much performance. (explain)

Radeon HD 7850 27520 Mpixels/sec
Radeon HD 5770 13600 Mpixels/sec
Difference: 13920 (102%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 5770

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 5770 Radeon HD 7850
Manufacturer AMD AMD
Year October 13, 2009 March 2012
Code Name Juniper XT Pitcairn Pro
Fab Process 40 nm 28 nm
Bus PCIe 2.1 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 850 MHz 860 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 4800 MHz 4800 MHz
Unified Shaders 800(160x5) 1024
Texture Mapping Units 40 64
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 3.2 OpenGL 4.2
Power (Max TDP) 108 watts 130 watts
Shader Model 5.0 5.0
Bandwidth 76800 MB/sec 153600 MB/sec
Texel Rate 34000 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 13600 Mpixels/sec 27520 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (measured in MB per second) that can be moved across the external memory interface within a second. The number is calculated by multiplying the card's interface width by its memory speed. If it uses DDR RAM, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly write to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]