Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 5870 vs Radeon HD 7850

Intro

The Radeon HD 5870 has a GPU core speed of 850 MHz, and the 1024 MB of GDDR5 memory runs at 1200 MHz through a 256-bit bus. It also is made up of 1600(320x5) SPUs, 80 TAUs, and 32 Raster Operation Units.

Compare those specs to the Radeon HD 7850, which comes with core clock speeds of 860 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 RAM. It features 1024 SPUs along with 64 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7850 130 Watts
Radeon HD 5870 188 Watts
Difference: 58 Watts (45%)

Memory Bandwidth

Both cards have the exact same memory bandwidth, so in theory they should have the same performance. (explain)

Texel Rate

The Radeon HD 5870 will be quite a bit (approximately 24%) better at texture filtering than the Radeon HD 7850. (explain)

Radeon HD 5870 68000 Mtexels/sec
Radeon HD 7850 55040 Mtexels/sec
Difference: 12960 (24%)

Pixel Rate

If using a high screen resolution is important to you, then the Radeon HD 7850 is a better choice, but not by far. (explain)

Radeon HD 7850 27520 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 320 (1%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 5870

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 5870 Radeon HD 7850
Manufacturer AMD AMD
Year September 23, 2009 March 2012
Code Name Cypress XT Pitcairn Pro
Fab Process 40 nm 28 nm
Bus PCIe 2.1 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 850 MHz 860 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 1600(320x5) 1024
Texture Mapping Units 80 64
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 3.2 OpenGL 4.2
Power (Max TDP) 188 watts 130 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 153600 MB/sec
Texel Rate 68000 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 27200 Mpixels/sec 27520 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (measured in megabytes per second) that can be moved across the external memory interface within a second. It is worked out by multiplying the bus width by its memory speed. In the case of DDR RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly record to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree