Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7750 vs Radeon HD 7850

Intro

The Radeon HD 7750 has a GPU core speed of 800 MHz, and the 1024 MB of GDDR5 memory runs at 1125 MHz through a 128-bit bus. It also features 512 Stream Processors, 32 TAUs, and 16 Raster Operation Units.

Compare that to the Radeon HD 7850, which makes use of a 28 nm design. AMD has clocked the core frequency at 860 MHz. The GDDR5 memory works at a frequency of 1200 MHz on this card. It features 1024 SPUs as well as 64 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
Radeon HD 7850 130 Watts
Difference: 75 Watts (136%)

Memory Bandwidth

In theory, the Radeon HD 7850 should be much faster than the Radeon HD 7750 overall. (explain)

Radeon HD 7850 153600 MB/sec
Radeon HD 7750 72000 MB/sec
Difference: 81600 (113%)

Texel Rate

The Radeon HD 7850 will be quite a bit (about 115%) faster with regards to AF than the Radeon HD 7750. (explain)

Radeon HD 7850 55040 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 29440 (115%)

Pixel Rate

The Radeon HD 7850 should be a lot (about 115%) faster with regards to FSAA than the Radeon HD 7750, and also will be capable of handling higher resolutions more effectively. (explain)

Radeon HD 7850 27520 Mpixels/sec
Radeon HD 7750 12800 Mpixels/sec
Difference: 14720 (115%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7750

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7750 Radeon HD 7850
Manufacturer AMD AMD
Year February 2012 March 2012
Code Name Cape Verde Pro Pitcairn Pro
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 800 MHz 860 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1125 MHz (4500 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 512 1024
Texture Mapping Units 32 64
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.1
OpenGL Version OpenGL 4.2 OpenGL 4.2
Power (Max TDP) 55 watts 130 watts
Shader Model 5.0 5.0
Bandwidth 72000 MB/sec 153600 MB/sec
Texel Rate 25600 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 12800 Mpixels/sec 27520 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (measured in megabytes per second) that can be transferred over the external memory interface in a second. It's worked out by multiplying the card's bus width by the speed of its memory. If it uses DDR type memory, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This number is worked out by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to its local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree