Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7750 vs Radeon HD 7850

Intro

The Radeon HD 7750 features a core clock speed of 800 MHz and a GDDR5 memory frequency of 1125 MHz. It also features a 128-bit bus, and uses a 28 nm design. It is made up of 512 SPUs, 32 Texture Address Units, and 16 Raster Operation Units.

Compare all that to the Radeon HD 7850, which has core speeds of 860 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 memory. It features 1024 SPUs along with 64 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
Radeon HD 7850 130 Watts
Difference: 75 Watts (136%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7850 is 113% faster than the Radeon HD 7750 overall, because of its greater data rate. (explain)

Radeon HD 7850 153600 MB/sec
Radeon HD 7750 72000 MB/sec
Difference: 81600 (113%)

Texel Rate

The Radeon HD 7850 is much (approximately 115%) better at texture filtering than the Radeon HD 7750. (explain)

Radeon HD 7850 55040 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 29440 (115%)

Pixel Rate

The Radeon HD 7850 is much (about 115%) better at full screen anti-aliasing than the Radeon HD 7750, and should be able to handle higher resolutions without losing too much performance. (explain)

Radeon HD 7850 27520 Mpixels/sec
Radeon HD 7750 12800 Mpixels/sec
Difference: 14720 (115%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7750

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7750 Radeon HD 7850
Manufacturer AMD AMD
Year February 2012 March 2012
Code Name Cape Verde Pro Pitcairn Pro
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 800 MHz 860 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1125 MHz (4500 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 512 1024
Texture Mapping Units 32 64
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.1
OpenGL Version OpenGL 4.2 OpenGL 4.2
Power (Max TDP) 55 watts 130 watts
Shader Model 5.0 5.0
Bandwidth 72000 MB/sec 153600 MB/sec
Texel Rate 25600 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 12800 Mpixels/sec 27520 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (measured in MB per second) that can be transferred over the external memory interface in one second. It is worked out by multiplying the bus width by its memory speed. In the case of DDR RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This figure is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing