Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs Radeon HD 7770

Intro

The GeForce 9500 GT DDR2 has a clock speed of 550 MHz and a DDR2 memory speed of 500 MHz. It also makes use of a 128-bit bus, and uses a 65 nm design. It is comprised of 32 SPUs, 16 TAUs, and 8 Raster Operation Units.

Compare those specifications to the Radeon HD 7770, which features GPU clock speed of 1000 MHz, and 1024 MB of GDDR5 RAM set to run at 1125 MHz through a 128-bit bus. It also features 640 Stream Processors, 40 Texture Address Units, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
Radeon HD 7770 80 Watts
Difference: 30 Watts (60%)

Memory Bandwidth

Performance-wise, the Radeon HD 7770 should in theory be much better than the GeForce 9500 GT DDR2 overall. (explain)

Radeon HD 7770 72000 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 56000 (350%)

Texel Rate

The Radeon HD 7770 should be a lot (about 355%) better at AF than the GeForce 9500 GT DDR2. (explain)

Radeon HD 7770 40000 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 31200 (355%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon HD 7770 is a better choice, by far. (explain)

Radeon HD 7770 16000 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 11600 (264%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9500 GT DDR2

Amazon.com

Radeon HD 7770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9500 GT DDR2 Radeon HD 7770
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G96a Cape Verde XT
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0, PCI PCIe 3.0 x16
Memory 256 MB 1024 MB
Core Speed 550 MHz 1000 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 500 MHz (1000 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 32 640
Texture Mapping Units 16 40
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 50 watts 80 watts
Shader Model 4.0 5.0
Bandwidth 16000 MB/sec 72000 MB/sec
Texel Rate 8800 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (counted in MB per second) that can be moved past the external memory interface within a second. The number is calculated by multiplying the bus width by its memory speed. If it uses DDR RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total number of texture units by the core speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing