Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs Radeon HD 7770

Intro

The GeForce 9500 GT DDR2 has core clock speeds of 550 MHz on the GPU, and 500 MHz on the 256 MB of DDR2 memory. It features 32 SPUs along with 16 TAUs and 8 Rasterization Operator Units.

Compare those specifications to the Radeon HD 7770, which has a clock speed of 1000 MHz and a GDDR5 memory frequency of 1125 MHz. It also makes use of a 128-bit memory bus, and uses a 28 nm design. It features 640 SPUs, 40 Texture Address Units, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
Radeon HD 7770 80 Watts
Difference: 30 Watts (60%)

Memory Bandwidth

In theory, the Radeon HD 7770 should be 350% quicker than the GeForce 9500 GT DDR2 overall, because of its greater data rate. (explain)

Radeon HD 7770 72000 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 56000 (350%)

Texel Rate

The Radeon HD 7770 should be quite a bit (approximately 355%) more effective at anisotropic filtering than the GeForce 9500 GT DDR2. (explain)

Radeon HD 7770 40000 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 31200 (355%)

Pixel Rate

If running with a high screen resolution is important to you, then the Radeon HD 7770 is a better choice, by far. (explain)

Radeon HD 7770 16000 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 11600 (264%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9500 GT DDR2

Amazon.com

Radeon HD 7770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9500 GT DDR2 Radeon HD 7770
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G96a Cape Verde XT
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0, PCI PCIe 3.0 x16
Memory 256 MB 1024 MB
Core Speed 550 MHz 1000 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 500 MHz (1000 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 32 640
Texture Mapping Units 16 40
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 50 watts 80 watts
Shader Model 4.0 5.0
Bandwidth 16000 MB/sec 72000 MB/sec
Texel Rate 8800 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of MB per second) that can be moved across the external memory interface in a second. The number is worked out by multiplying the bus width by its memory speed. In the case of DDR memory, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This figure is worked out by multiplying the total texture units by the core speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly write to the local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing