Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs Radeon HD 7770

Intro

The GeForce 9500 GT DDR2 comes with a clock speed of 550 MHz and a DDR2 memory frequency of 500 MHz. It also makes use of a 128-bit memory bus, and makes use of a 65 nm design. It is comprised of 32 SPUs, 16 Texture Address Units, and 8 Raster Operation Units.

Compare all of that to the Radeon HD 7770, which uses a 28 nm design. AMD has clocked the core frequency at 1000 MHz. The GDDR5 RAM is set to run at a speed of 1125 MHz on this particular model. It features 640 SPUs as well as 40 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
Radeon HD 7770 80 Watts
Difference: 30 Watts (60%)

Memory Bandwidth

The Radeon HD 7770 should in theory perform a lot faster than the GeForce 9500 GT DDR2 overall. (explain)

Radeon HD 7770 72000 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 56000 (350%)

Texel Rate

The Radeon HD 7770 will be much (more or less 355%) faster with regards to texture filtering than the GeForce 9500 GT DDR2. (explain)

Radeon HD 7770 40000 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 31200 (355%)

Pixel Rate

The Radeon HD 7770 will be much (more or less 264%) more effective at FSAA than the GeForce 9500 GT DDR2, and also able to handle higher resolutions while still performing well. (explain)

Radeon HD 7770 16000 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 11600 (264%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9500 GT DDR2

Amazon.com

Radeon HD 7770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9500 GT DDR2 Radeon HD 7770
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G96a Cape Verde XT
Memory 256 MB 1024 MB
Core Speed 550 MHz 1000 MHz
Memory Speed 1000 MHz 4500 MHz
Power (Max TDP) 50 watts 80 watts
Bandwidth 16000 MB/sec 72000 MB/sec
Texel Rate 8800 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 16000 Mpixels/sec
Unified Shaders 32 640
Texture Mapping Units 16 40
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
Fab Process 65 nm 28 nm
Transistors 314 million 1500 million
Bus PCIe x16 2.0, PCI PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Bandwidth is the maximum amount of information (counted in MB per second) that can be moved past the external memory interface in a second. It's worked out by multiplying the bus width by the speed of its memory. If the card has DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This figure is calculated by multiplying the total amount of texture units of the card by the core speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly record to its local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]