Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs Radeon HD 7770

Intro

The GeForce 9500 GT DDR2 comes with core clock speeds of 550 MHz on the GPU, and 500 MHz on the 256 MB of DDR2 memory. It features 32 SPUs as well as 16 TAUs and 8 ROPs.

Compare those specifications to the Radeon HD 7770, which has core speeds of 1000 MHz on the GPU, and 1125 MHz on the 1024 MB of GDDR5 RAM. It features 640 SPUs along with 40 TAUs and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
Radeon HD 7770 80 Watts
Difference: 30 Watts (60%)

Memory Bandwidth

In theory, the Radeon HD 7770 will be 350% faster than the GeForce 9500 GT DDR2 in general, due to its greater bandwidth. (explain)

Radeon HD 7770 72000 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 56000 (350%)

Texel Rate

The Radeon HD 7770 is much (about 355%) faster with regards to anisotropic filtering than the GeForce 9500 GT DDR2. (explain)

Radeon HD 7770 40000 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 31200 (355%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 7770 is the winner, by far. (explain)

Radeon HD 7770 16000 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 11600 (264%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9500 GT DDR2

Amazon.com

Radeon HD 7770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9500 GT DDR2 Radeon HD 7770
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G96a Cape Verde XT
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0, PCI PCIe 3.0 x16
Memory 256 MB 1024 MB
Core Speed 550 MHz 1000 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 500 MHz (1000 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 32 640
Texture Mapping Units 16 40
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 50 watts 80 watts
Shader Model 4.0 5.0
Bandwidth 16000 MB/sec 72000 MB/sec
Texel Rate 8800 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (measured in megabytes per second) that can be transported past the external memory interface in a second. It is worked out by multiplying the bus width by the speed of its memory. If the card has DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly write to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree