Compare any two graphics cards:
VS

GeForce GT 210 vs Radeon HD 7770

Intro

The GeForce GT 210 comes with core clock speeds of 589 MHz on the GPU, and 800 MHz on the 512 MB of DDR3 RAM. It features 16 SPUs as well as 8 TAUs and 4 Rasterization Operator Units.

Compare all of that to the Radeon HD 7770, which comes with a clock frequency of 1000 MHz and a GDDR5 memory speed of 1125 MHz. It also uses a 128-bit bus, and uses a 28 nm design. It features 640 SPUs, 40 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 210 31 Watts
Radeon HD 7770 80 Watts
Difference: 49 Watts (158%)

Memory Bandwidth

In theory, the Radeon HD 7770 should perform quite a bit faster than the GeForce GT 210 overall. (explain)

Radeon HD 7770 72000 MB/sec
GeForce GT 210 12800 MB/sec
Difference: 59200 (463%)

Texel Rate

The Radeon HD 7770 is a lot (more or less 749%) faster with regards to texture filtering than the GeForce GT 210. (explain)

Radeon HD 7770 40000 Mtexels/sec
GeForce GT 210 4712 Mtexels/sec
Difference: 35288 (749%)

Pixel Rate

If running with a high screen resolution is important to you, then the Radeon HD 7770 is a better choice, by far. (explain)

Radeon HD 7770 16000 Mpixels/sec
GeForce GT 210 2356 Mpixels/sec
Difference: 13644 (579%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 210

Amazon.com

Radeon HD 7770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 210 Radeon HD 7770
Manufacturer nVidia AMD
Year October 2009 February 2012
Code Name GT218 Cape Verde XT
Fab Process 40 nm 28 nm
Bus PCIe 2.0 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 589 MHz 1000 MHz
Shader Speed 1402 MHz (N/A) MHz
Memory Speed 1600 MHz 4500 MHz
Unified Shaders 16 640
Texture Mapping Units 8 40
Render Output Units 4 16
Bus Type DDR3 GDDR5
Bus Width 64-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11.1
OpenGL Version OpenGL 3.2 OpenGL 4.2
Power (Max TDP) 31 watts 80 watts
Shader Model 4.1 5.0
Bandwidth 12800 MB/sec 72000 MB/sec
Texel Rate 4712 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 2356 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (counted in megabytes per second) that can be moved over the external memory interface within a second. It is calculated by multiplying the card's interface width by the speed of its memory. If it uses DDR type RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This figure is worked out by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing