Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 210 vs Radeon HD 7770

Intro

The GeForce GT 210 has a clock frequency of 589 MHz and a DDR3 memory frequency of 800 MHz. It also makes use of a 64-bit memory bus, and makes use of a 40 nm design. It is made up of 16 SPUs, 8 Texture Address Units, and 4 Raster Operation Units.

Compare those specifications to the Radeon HD 7770, which features a clock speed of 1000 MHz and a GDDR5 memory frequency of 1125 MHz. It also makes use of a 128-bit memory bus, and uses a 28 nm design. It is made up of 640 SPUs, 40 TAUs, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 210 31 Watts
Radeon HD 7770 80 Watts
Difference: 49 Watts (158%)

Memory Bandwidth

As far as performance goes, the Radeon HD 7770 should in theory be quite a bit better than the GeForce GT 210 overall. (explain)

Radeon HD 7770 72000 MB/sec
GeForce GT 210 12800 MB/sec
Difference: 59200 (463%)

Texel Rate

The Radeon HD 7770 is a lot (more or less 749%) better at anisotropic filtering than the GeForce GT 210. (explain)

Radeon HD 7770 40000 Mtexels/sec
GeForce GT 210 4712 Mtexels/sec
Difference: 35288 (749%)

Pixel Rate

The Radeon HD 7770 should be much (approximately 579%) better at anti-aliasing than the GeForce GT 210, and able to handle higher resolutions better. (explain)

Radeon HD 7770 16000 Mpixels/sec
GeForce GT 210 2356 Mpixels/sec
Difference: 13644 (579%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 210

Amazon.com

Radeon HD 7770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 210 Radeon HD 7770
Manufacturer nVidia AMD
Year October 2009 February 2012
Code Name GT218 Cape Verde XT
Fab Process 40 nm 28 nm
Bus PCIe 2.0 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 589 MHz 1000 MHz
Shader Speed 1402 MHz (N/A) MHz
Memory Speed 800 MHz (1600 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 16 640
Texture Mapping Units 8 40
Render Output Units 4 16
Bus Type DDR3 GDDR5
Bus Width 64-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11.1
OpenGL Version OpenGL 3.2 OpenGL 4.2
Power (Max TDP) 31 watts 80 watts
Shader Model 4.1 5.0
Bandwidth 12800 MB/sec 72000 MB/sec
Texel Rate 4712 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 2356 Mpixels/sec 16000 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in MB per second) that can be transported past the external memory interface in a second. It is calculated by multiplying the card's bus width by the speed of its memory. In the case of DDR memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly record to the local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree