Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 275 vs Radeon HD 7750

Intro

The GeForce GTX 275 comes with a core clock frequency of 633 MHz and a GDDR3 memory frequency of 1134 MHz. It also uses a 448-bit bus, and makes use of a 55 nm design. It features 240 SPUs, 80 Texture Address Units, and 28 Raster Operation Units.

Compare that to the Radeon HD 7750, which features a clock frequency of 800 MHz and a GDDR5 memory speed of 1125 MHz. It also makes use of a 128-bit bus, and makes use of a 28 nm design. It is comprised of 512 SPUs, 32 TAUs, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GTX 275 219 Watts
Difference: 164 Watts (298%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 275 should theoretically be a lot superior to the Radeon HD 7750 overall. (explain)

GeForce GTX 275 127008 MB/sec
Radeon HD 7750 72000 MB/sec
Difference: 55008 (76%)

Texel Rate

The GeForce GTX 275 should be quite a bit (approximately 98%) better at anisotropic filtering than the Radeon HD 7750. (explain)

GeForce GTX 275 50640 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 25040 (98%)

Pixel Rate

The GeForce GTX 275 should be much (about 38%) better at AA than the Radeon HD 7750, and also should be capable of handling higher screen resolutions while still performing well. (explain)

GeForce GTX 275 17724 Mpixels/sec
Radeon HD 7750 12800 Mpixels/sec
Difference: 4924 (38%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 275

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 275 Radeon HD 7750
Manufacturer nVidia AMD
Year April 9, 2009 February 2012
Code Name G200b Cape Verde Pro
Fab Process 55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 896 MB 1024 MB
Core Speed 633 MHz 800 MHz
Shader Speed 1404 MHz (N/A) MHz
Memory Speed 1134 MHz (2268 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 240 512
Texture Mapping Units 80 32
Render Output Units 28 16
Bus Type GDDR3 GDDR5
Bus Width 448-bit 128-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.1 OpenGL 4.2
Power (Max TDP) 219 watts 55 watts
Shader Model 4.0 5.0
Bandwidth 127008 MB/sec 72000 MB/sec
Texel Rate 50640 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 17724 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (counted in MB per second) that can be transported across the external memory interface within a second. It's calculated by multiplying the interface width by its memory speed. In the case of DDR memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This is calculated by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing