Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 275 vs Radeon HD 7750

Intro

The GeForce GTX 275 features a GPU core speed of 633 MHz, and the 896 MB of GDDR3 RAM is set to run at 1134 MHz through a 448-bit bus. It also features 240 Stream Processors, 80 TAUs, and 28 Raster Operation Units.

Compare that to the Radeon HD 7750, which features a core clock speed of 800 MHz and a GDDR5 memory speed of 1125 MHz. It also makes use of a 128-bit memory bus, and makes use of a 28 nm design. It features 512 SPUs, 32 TAUs, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GTX 275 219 Watts
Difference: 164 Watts (298%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 275 should be 76% quicker than the Radeon HD 7750 overall, because of its higher data rate. (explain)

GeForce GTX 275 127008 MB/sec
Radeon HD 7750 72000 MB/sec
Difference: 55008 (76%)

Texel Rate

The GeForce GTX 275 will be much (about 98%) better at anisotropic filtering than the Radeon HD 7750. (explain)

GeForce GTX 275 50640 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 25040 (98%)

Pixel Rate

The GeForce GTX 275 should be much (approximately 38%) faster with regards to full screen anti-aliasing than the Radeon HD 7750, and also will be able to handle higher resolutions better. (explain)

GeForce GTX 275 17724 Mpixels/sec
Radeon HD 7750 12800 Mpixels/sec
Difference: 4924 (38%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 275

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 275 Radeon HD 7750
Manufacturer nVidia AMD
Year April 9, 2009 February 2012
Code Name G200b Cape Verde Pro
Fab Process 55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 896 MB 1024 MB
Core Speed 633 MHz 800 MHz
Shader Speed 1404 MHz (N/A) MHz
Memory Speed 1134 MHz (2268 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 240 512
Texture Mapping Units 80 32
Render Output Units 28 16
Bus Type GDDR3 GDDR5
Bus Width 448-bit 128-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.1 OpenGL 4.2
Power (Max TDP) 219 watts 55 watts
Shader Model 4.0 5.0
Bandwidth 127008 MB/sec 72000 MB/sec
Texel Rate 50640 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 17724 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (in units of MB per second) that can be transported past the external memory interface in one second. It's calculated by multiplying the interface width by the speed of its memory. If it uses DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly write to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing