Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 430 vs Radeon HD 7750

Intro

The GeForce GT 430 features clock speeds of 700 MHz on the GPU, and 900 MHz on the 512 MB of GDDR3 RAM. It features 96 SPUs along with 16 TAUs and 4 Rasterization Operator Units.

Compare that to the Radeon HD 7750, which makes use of a 28 nm design. AMD has set the core frequency at 800 MHz. The GDDR5 memory runs at a speed of 1125 MHz on this specific card. It features 512 SPUs as well as 32 Texture Address Units and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GT 430 60 Watts
Difference: 5 Watts (9%)

Memory Bandwidth

As far as performance goes, the Radeon HD 7750 should in theory be quite a bit superior to the GeForce GT 430 overall. (explain)

Radeon HD 7750 72000 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 43200 (150%)

Texel Rate

The Radeon HD 7750 should be much (about 129%) more effective at texture filtering than the GeForce GT 430. (explain)

Radeon HD 7750 25600 Mtexels/sec
GeForce GT 430 11200 Mtexels/sec
Difference: 14400 (129%)

Pixel Rate

The Radeon HD 7750 will be a lot (more or less 357%) more effective at full screen anti-aliasing than the GeForce GT 430, and also will be capable of handling higher screen resolutions without losing too much performance. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 10000 (357%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 430

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 430 Radeon HD 7750
Manufacturer nVidia AMD
Year October 2010 February 2012
Code Name GF108 Cape Verde Pro
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 700 MHz 800 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 96 512
Texture Mapping Units 16 32
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 60 watts 55 watts
Shader Model 5.0 5.0
Bandwidth 28800 MB/sec 72000 MB/sec
Texel Rate 11200 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (measured in megabytes per second) that can be transferred across the external memory interface within a second. The number is worked out by multiplying the bus width by the speed of its memory. In the case of DDR type memory, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This number is calculated by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree