Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 430 vs Radeon HD 7750

Intro

The GeForce GT 430 uses a 40 nm design. nVidia has clocked the core speed at 700 MHz. The GDDR3 memory works at a speed of 900 MHz on this card. It features 96 SPUs as well as 16 TAUs and 4 ROPs.

Compare all of that to the Radeon HD 7750, which features a core clock frequency of 800 MHz and a GDDR5 memory speed of 1125 MHz. It also makes use of a 128-bit bus, and makes use of a 28 nm design. It is comprised of 512 SPUs, 32 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GT 430 60 Watts
Difference: 5 Watts (9%)

Memory Bandwidth

The Radeon HD 7750 should in theory perform much faster than the GeForce GT 430 in general. (explain)

Radeon HD 7750 72000 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 43200 (150%)

Texel Rate

The Radeon HD 7750 should be quite a bit (about 129%) faster with regards to AF than the GeForce GT 430. (explain)

Radeon HD 7750 25600 Mtexels/sec
GeForce GT 430 11200 Mtexels/sec
Difference: 14400 (129%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon HD 7750 is a better choice, by a large margin. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 10000 (357%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 430 Radeon HD 7750
Manufacturer nVidia AMD
Year October 2010 February 2012
Code Name GF108 Cape Verde Pro
Memory 512 MB 1024 MB
Core Speed 700 MHz 800 MHz
Memory Speed 1800 MHz 4500 MHz
Power (Max TDP) 60 watts 55 watts
Bandwidth 28800 MB/sec 72000 MB/sec
Texel Rate 11200 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 12800 Mpixels/sec
Unified Shaders 96 512
Texture Mapping Units 16 32
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 585 million 1500 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2

Memory Bandwidth: Bandwidth is the max amount of information (in units of MB per second) that can be moved over the external memory interface in a second. It's calculated by multiplying the interface width by the speed of its memory. If it uses DDR RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]