Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 430 vs Radeon HD 7750

Intro

The GeForce GT 430 features a core clock frequency of 700 MHz and a GDDR3 memory frequency of 900 MHz. It also features a 128-bit bus, and uses a 40 nm design. It features 96 SPUs, 16 TAUs, and 4 Raster Operation Units.

Compare all that to the Radeon HD 7750, which features GPU clock speed of 800 MHz, and 1024 MB of GDDR5 RAM running at 1125 MHz through a 128-bit bus. It also is comprised of 512 SPUs, 32 Texture Address Units, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GT 430 60 Watts
Difference: 5 Watts (9%)

Memory Bandwidth

The Radeon HD 7750, in theory, should be a lot faster than the GeForce GT 430 in general. (explain)

Radeon HD 7750 72000 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 43200 (150%)

Texel Rate

The Radeon HD 7750 should be a lot (approximately 129%) faster with regards to anisotropic filtering than the GeForce GT 430. (explain)

Radeon HD 7750 25600 Mtexels/sec
GeForce GT 430 11200 Mtexels/sec
Difference: 14400 (129%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon HD 7750 is superior to the GeForce GT 430, by a large margin. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 10000 (357%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 430

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 430 Radeon HD 7750
Manufacturer nVidia AMD
Year October 2010 February 2012
Code Name GF108 Cape Verde Pro
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 700 MHz 800 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 96 512
Texture Mapping Units 16 32
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 60 watts 55 watts
Shader Model 5.0 5.0
Bandwidth 28800 MB/sec 72000 MB/sec
Texel Rate 11200 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in MB per second) that can be transferred over the external memory interface in one second. The number is calculated by multiplying the bus width by the speed of its memory. If it uses DDR RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total texture units by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly write to the local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree