Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GT 430 vs Radeon HD 7750


The GeForce GT 430 uses a 40 nm design. nVidia has set the core speed at 700 MHz. The GDDR3 RAM runs at a speed of 900 MHz on this specific card. It features 96 SPUs as well as 16 Texture Address Units and 4 Rasterization Operator Units.

Compare those specifications to the Radeon HD 7750, which has core speeds of 800 MHz on the GPU, and 1125 MHz on the 1024 MB of GDDR5 RAM. It features 512 SPUs as well as 32 Texture Address Units and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GT 430 60 Watts
Difference: 5 Watts (9%)

Memory Bandwidth

The Radeon HD 7750, in theory, should be much faster than the GeForce GT 430 overall. (explain)

Radeon HD 7750 72000 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 43200 (150%)

Texel Rate

The Radeon HD 7750 is quite a bit (more or less 129%) more effective at AF than the GeForce GT 430. (explain)

Radeon HD 7750 25600 Mtexels/sec
GeForce GT 430 11200 Mtexels/sec
Difference: 14400 (129%)

Pixel Rate

If using a high screen resolution is important to you, then the Radeon HD 7750 is the winner, by far. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 10000 (357%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430

Radeon HD 7750

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GT 430 Radeon HD 7750
Manufacturer nVidia AMD
Year October 2010 February 2012
Code Name GF108 Cape Verde Pro
Memory 512 MB 1024 MB
Core Speed 700 MHz 800 MHz
Memory Speed 1800 MHz 4500 MHz
Power (Max TDP) 60 watts 55 watts
Bandwidth 28800 MB/sec 72000 MB/sec
Texel Rate 11200 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 12800 Mpixels/sec
Unified Shaders 96 512
Texture Mapping Units 16 32
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 585 million 1500 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in megabytes per second) that can be moved across the external memory interface in a second. It is calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR RAM, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This number is calculated by multiplying the total texture units of the card by the core speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield