Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTS 250 512MB vs Radeon HD 5770


The GeForce GTS 250 512MB has a GPU core speed of 738 MHz, and the 512 MB of GDDR3 memory runs at 1100 MHz through a 256-bit bus. It also is comprised of 128 SPUs, 64 TAUs, and 16 ROPs.

Compare those specs to the Radeon HD 5770, which has a core clock frequency of 850 MHz and a GDDR5 memory frequency of 1200 MHz. It also uses a 128-bit bus, and makes use of a 40 nm design. It features 800(160x5) SPUs, 40 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
GeForce GTS 250 512MB 145 Watts
Difference: 37 Watts (34%)

Memory Bandwidth

In theory, the Radeon HD 5770 should be 9% faster than the GeForce GTS 250 512MB in general, due to its greater data rate. (explain)

Radeon HD 5770 76800 MB/sec
GeForce GTS 250 512MB 70400 MB/sec
Difference: 6400 (9%)

Texel Rate

The GeForce GTS 250 512MB will be a lot (about 39%) better at texture filtering than the Radeon HD 5770. (explain)

GeForce GTS 250 512MB 47232 Mtexels/sec
Radeon HD 5770 34000 Mtexels/sec
Difference: 13232 (39%)

Pixel Rate

The Radeon HD 5770 should be a small bit (approximately 15%) more effective at FSAA than the GeForce GTS 250 512MB, and also should be capable of handling higher screen resolutions better. (explain)

Radeon HD 5770 13600 Mpixels/sec
GeForce GTS 250 512MB 11808 Mpixels/sec
Difference: 1792 (15%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTS 250 512MB

Radeon HD 5770

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTS 250 512MB Radeon HD 5770
Manufacturer nVidia AMD
Year March 3, 2009 October 13, 2009
Code Name G92a/b Juniper XT
Memory 512 MB 1024 MB
Core Speed 738 MHz 850 MHz
Memory Speed 2200 MHz 4800 MHz
Power (Max TDP) 145 watts 108 watts
Bandwidth 70400 MB/sec 76800 MB/sec
Texel Rate 47232 Mtexels/sec 34000 Mtexels/sec
Pixel Rate 11808 Mpixels/sec 13600 Mpixels/sec
Unified Shaders 128 800(160x5)
Texture Mapping Units 64 40
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65/55 nm 40 nm
Transistors 754 million 1040 million
Bus PCIe x16 2.0 PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in MB per second) that can be transferred over the external memory interface within a second. The number is worked out by multiplying the card's interface width by its memory clock speed. If it uses DDR type RAM, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This figure is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield