Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTS 250 512MB vs Radeon HD 5770

Intro

The GeForce GTS 250 512MB features a core clock speed of 738 MHz and a GDDR3 memory frequency of 1100 MHz. It also makes use of a 256-bit memory bus, and uses a 65/55 nm design. It is made up of 128 SPUs, 64 Texture Address Units, and 16 Raster Operation Units.

Compare that to the Radeon HD 5770, which comes with a GPU core clock speed of 850 MHz, and 1024 MB of GDDR5 memory running at 1200 MHz through a 128-bit bus. It also is made up of 800(160x5) SPUs, 40 TAUs, and 16 ROPs.

Crysis

Settings: High Detail
AA: 4x
AF: none
Resolution: 1680x1050
Test Machine: Intel Core i5-750,Windows 7 Ultimate x64,3 x 2GB (Source)
Radeon HD 5770 34 FPS
GeForce GTS 250 512MB 27 FPS
Difference: 7 FPS (26%)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
GeForce GTS 250 512MB 145 Watts
Difference: 37 Watts (34%)

Memory Bandwidth

Performance-wise, the Radeon HD 5770 should theoretically be a bit superior to the GeForce GTS 250 512MB overall. (explain)

Radeon HD 5770 76800 MB/sec
GeForce GTS 250 512MB 70400 MB/sec
Difference: 6400 (9%)

Texel Rate

The GeForce GTS 250 512MB should be quite a bit (about 39%) better at anisotropic filtering than the Radeon HD 5770. (explain)

GeForce GTS 250 512MB 47232 Mtexels/sec
Radeon HD 5770 34000 Mtexels/sec
Difference: 13232 (39%)

Pixel Rate

The Radeon HD 5770 should be just a bit (more or less 15%) faster with regards to FSAA than the GeForce GTS 250 512MB, and also capable of handling higher resolutions without slowing down too much. (explain)

Radeon HD 5770 13600 Mpixels/sec
GeForce GTS 250 512MB 11808 Mpixels/sec
Difference: 1792 (15%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTS 250 512MB

Amazon.com

Other US-based stores

Radeon HD 5770

Amazon.com

Other US-based stores

Specifications

Model GeForce GTS 250 512MB Radeon HD 5770
Manufacturer nVidia ATi
Year March 3, 2009 October 13, 2009
Code Name G92a/b Juniper XT
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 512 MB 1024 MB
Core Speed 738 MHz 850 MHz
Shader Speed 1836 MHz (N/A) MHz
Memory Speed 1100 MHz (2200 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 128 800(160x5)
Texture Mapping Units 64 40
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 3.2
Power (Max TDP) 145 watts 108 watts
Shader Model 4.0 5.0
Bandwidth 70400 MB/sec 76800 MB/sec
Texel Rate 47232 Mtexels/sec 34000 Mtexels/sec
Pixel Rate 11808 Mpixels/sec 13600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (counted in MB per second) that can be moved over the external memory interface in a second. It is calculated by multiplying the card's interface width by its memory speed. In the case of DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This is calculated by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree