Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTS 250 512MB vs Radeon HD 5770

Intro

The GeForce GTS 250 512MB makes use of a 65/55 nm design. nVidia has clocked the core speed at 738 MHz. The GDDR3 RAM is set to run at a frequency of 1100 MHz on this specific card. It features 128 SPUs along with 64 TAUs and 16 Rasterization Operator Units.

Compare that to the Radeon HD 5770, which comes with a clock speed of 850 MHz and a GDDR5 memory speed of 1200 MHz. It also features a 128-bit bus, and uses a 40 nm design. It is made up of 800(160x5) SPUs, 40 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
GeForce GTS 250 512MB 145 Watts
Difference: 37 Watts (34%)

Memory Bandwidth

In theory, the Radeon HD 5770 should be a bit faster than the GeForce GTS 250 512MB overall. (explain)

Radeon HD 5770 76800 MB/sec
GeForce GTS 250 512MB 70400 MB/sec
Difference: 6400 (9%)

Texel Rate

The GeForce GTS 250 512MB is much (about 39%) better at texture filtering than the Radeon HD 5770. (explain)

GeForce GTS 250 512MB 47232 Mtexels/sec
Radeon HD 5770 34000 Mtexels/sec
Difference: 13232 (39%)

Pixel Rate

The Radeon HD 5770 should be just a bit (more or less 15%) better at anti-aliasing than the GeForce GTS 250 512MB, and also able to handle higher screen resolutions without losing too much performance. (explain)

Radeon HD 5770 13600 Mpixels/sec
GeForce GTS 250 512MB 11808 Mpixels/sec
Difference: 1792 (15%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTS 250 512MB

Amazon.com

Radeon HD 5770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTS 250 512MB Radeon HD 5770
Manufacturer nVidia AMD
Year March 3, 2009 October 13, 2009
Code Name G92a/b Juniper XT
Memory 512 MB 1024 MB
Core Speed 738 MHz 850 MHz
Memory Speed 2200 MHz 4800 MHz
Power (Max TDP) 145 watts 108 watts
Bandwidth 70400 MB/sec 76800 MB/sec
Texel Rate 47232 Mtexels/sec 34000 Mtexels/sec
Pixel Rate 11808 Mpixels/sec 13600 Mpixels/sec
Unified Shaders 128 800(160x5)
Texture Mapping Units 64 40
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65/55 nm 40 nm
Transistors 754 million 1040 million
Bus PCIe x16 2.0 PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of megabytes per second) that can be transported across the external memory interface in a second. It's worked out by multiplying the bus width by its memory clock speed. If the card has DDR type RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]