Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 280 vs Radeon HD 7950

Intro

The GeForce GTX 280 comes with core speeds of 602 MHz on the GPU, and 1107 MHz on the 1024 MB of GDDR3 memory. It features 240 SPUs along with 80 Texture Address Units and 32 ROPs.

Compare those specs to the Radeon HD 7950, which features a core clock speed of 800 MHz and a GDDR5 memory speed of 1250 MHz. It also features a 384-bit bus, and uses a 28 nm design. It is comprised of 1792 SPUs, 112 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7950 200 Watts
GeForce GTX 280 236 Watts
Difference: 36 Watts (18%)

Memory Bandwidth

Theoretically, the Radeon HD 7950 should be a lot faster than the GeForce GTX 280 in general. (explain)

Radeon HD 7950 240000 MB/sec
GeForce GTX 280 141696 MB/sec
Difference: 98304 (69%)

Texel Rate

The Radeon HD 7950 should be a lot (more or less 86%) more effective at texture filtering than the GeForce GTX 280. (explain)

Radeon HD 7950 89600 Mtexels/sec
GeForce GTX 280 48160 Mtexels/sec
Difference: 41440 (86%)

Pixel Rate

If using high levels of AA is important to you, then the Radeon HD 7950 is the winner, by a large margin. (explain)

Radeon HD 7950 25600 Mpixels/sec
GeForce GTX 280 19264 Mpixels/sec
Difference: 6336 (33%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 280

Amazon.com

Other US-based stores

Radeon HD 7950

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 280 Radeon HD 7950
Manufacturer nVidia ATi
Year June 17, 2008 January 2012
Code Name G200 Tahiti Pro
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 1024 MB 1536 MB
Core Speed 602 MHz 800 MHz
Shader Speed 1296 MHz (N/A) MHz
Memory Speed 1107 MHz (2214 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 240 1792
Texture Mapping Units 80 112
Render Output Units 32 32
Bus Type GDDR3 GDDR5
Bus Width 512-bit 384-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.1 OpenGL 4.2
Power (Max TDP) 236 watts 200 watts
Shader Model 4.0 5.0
Bandwidth 141696 MB/sec 240000 MB/sec
Texel Rate 48160 Mtexels/sec 89600 Mtexels/sec
Pixel Rate 19264 Mpixels/sec 25600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of megabytes per second) that can be transported past the external memory interface in a second. The number is calculated by multiplying the card's interface width by the speed of its memory. If it uses DDR memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total texture units of the card by the core speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree