Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 280 vs Radeon HD 5770


The GeForce GTX 280 has a GPU core clock speed of 602 MHz, and the 1024 MB of GDDR3 RAM is set to run at 1107 MHz through a 512-bit bus. It also is made up of 240 SPUs, 80 TAUs, and 32 ROPs.

Compare those specs to the Radeon HD 5770, which has core speeds of 850 MHz on the GPU, and 1200 MHz on the 1024 MB of GDDR5 RAM. It features 800(160x5) SPUs along with 40 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
GeForce GTX 280 236 Watts
Difference: 128 Watts (119%)

Memory Bandwidth

The GeForce GTX 280 should in theory perform quite a bit faster than the Radeon HD 5770 overall. (explain)

GeForce GTX 280 141696 MB/sec
Radeon HD 5770 76800 MB/sec
Difference: 64896 (85%)

Texel Rate

The GeForce GTX 280 will be much (more or less 42%) faster with regards to AF than the Radeon HD 5770. (explain)

GeForce GTX 280 48160 Mtexels/sec
Radeon HD 5770 34000 Mtexels/sec
Difference: 14160 (42%)

Pixel Rate

The GeForce GTX 280 should be a lot (approximately 42%) better at anti-aliasing than the Radeon HD 5770, and also will be able to handle higher resolutions while still performing well. (explain)

GeForce GTX 280 19264 Mpixels/sec
Radeon HD 5770 13600 Mpixels/sec
Difference: 5664 (42%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 280

Radeon HD 5770

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 280 Radeon HD 5770
Manufacturer nVidia AMD
Year June 17, 2008 October 13, 2009
Code Name G200 Juniper XT
Memory 1024 MB 1024 MB
Core Speed 602 MHz 850 MHz
Memory Speed 2214 MHz 4800 MHz
Power (Max TDP) 236 watts 108 watts
Bandwidth 141696 MB/sec 76800 MB/sec
Texel Rate 48160 Mtexels/sec 34000 Mtexels/sec
Pixel Rate 19264 Mpixels/sec 13600 Mpixels/sec
Unified Shaders 240 800(160x5)
Texture Mapping Units 80 40
Render Output Units 32 16
Bus Type GDDR3 GDDR5
Bus Width 512-bit 128-bit
Fab Process 65 nm 40 nm
Transistors 1400 million 1040 million
Bus PCIe x16 2.0 PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 3.2

Memory Bandwidth: Bandwidth is the largest amount of data (measured in MB per second) that can be transported over the external memory interface within a second. The number is worked out by multiplying the card's interface width by its memory clock speed. If it uses DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total number of texture units by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield