Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 6950 vs Radeon HD 7970

Intro

The Radeon HD 6950 has core clock speeds of 800 MHz on the GPU, and 1250 MHz on the 1024 MB of GDDR5 memory. It features 1408 SPUs as well as 88 Texture Address Units and 32 ROPs.

Compare those specifications to the Radeon HD 7970, which comes with core speeds of 925 MHz on the GPU, and 1375 MHz on the 3072 MB of GDDR5 memory. It features 2048 SPUs as well as 128 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6950 200 Watts
Radeon HD 7970 250 Watts
Difference: 50 Watts (25%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7970 should be 65% faster than the Radeon HD 6950 overall, because of its higher bandwidth. (explain)

Radeon HD 7970 264000 MB/sec
Radeon HD 6950 160000 MB/sec
Difference: 104000 (65%)

Texel Rate

The Radeon HD 7970 will be much (more or less 68%) better at AF than the Radeon HD 6950. (explain)

Radeon HD 7970 118400 Mtexels/sec
Radeon HD 6950 70400 Mtexels/sec
Difference: 48000 (68%)

Pixel Rate

If using high levels of AA is important to you, then the Radeon HD 7970 is superior to the Radeon HD 6950, but only just. (explain)

Radeon HD 7970 29600 Mpixels/sec
Radeon HD 6950 25600 Mpixels/sec
Difference: 4000 (16%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 6950

Amazon.com

Radeon HD 7970

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 6950 Radeon HD 7970
Manufacturer AMD AMD
Year December 2010 January 2012
Code Name Cayman Pro Tahiti XT
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 3072 MB
Core Speed 800 MHz 925 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1250 MHz (5000 MHz effective) 1375 MHz (5500 MHz effective)
Unified Shaders 1408 2048
Texture Mapping Units 88 128
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 384-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 200 watts 250 watts
Shader Model 5.0 5.0
Bandwidth 160000 MB/sec 264000 MB/sec
Texel Rate 70400 Mtexels/sec 118400 Mtexels/sec
Pixel Rate 25600 Mpixels/sec 29600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in megabytes per second) that can be transferred over the external memory interface in one second. It's calculated by multiplying the card's interface width by the speed of its memory. In the case of DDR memory, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing