Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 315 vs GeForce GTX 560


Intro

The GeForce GT 315 makes use of a 40 nm design. nVidia has set the core speed at 625 MHz. The DDR3 RAM is set to run at a frequency of 790 MHz on this particular card. It features 48 SPUs as well as 16 TAUs and 8 ROPs.

Compare all that to the GeForce GTX 560, which comes with GPU core speed of 810 MHz, and 1024 MB of GDDR5 RAM set to run at 1001 MHz through a 256-bit bus. It also features 336 SPUs, 56 TAUs, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 315 52 Watts
GeForce GTX 560 150 Watts
Difference: 98 Watts (188%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 560 should be a lot faster than the GeForce GT 315 in general. (explain)

GeForce GTX 560 128128 MB/sec
GeForce GT 315 25280 MB/sec
Difference: 102848 (407%)

Texel Rate

The GeForce GTX 560 is quite a bit (about 354%) more effective at AF than the GeForce GT 315. (explain)

GeForce GTX 560 45360 Mtexels/sec
GeForce GT 315 10000 Mtexels/sec
Difference: 35360 (354%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX 560 is superior to the GeForce GT 315, and very much so. (explain)

GeForce GTX 560 25920 Mpixels/sec
GeForce GT 315 5000 Mpixels/sec
Difference: 20920 (418%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 315

GeForce GTX 560

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 315 GeForce GTX 560
Manufacturer nVidia nVidia
Year November 2009 May 2011
Code Name GT216 GF114
Memory 512 MB 1024 MB
Core Speed 625 MHz 810 MHz
Memory Speed 1580 MHz 4004 MHz
Power (Max TDP) 52 watts 150 watts
Bandwidth 25280 MB/sec 128128 MB/sec
Texel Rate 10000 Mtexels/sec 45360 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 25920 Mpixels/sec
Unified Shaders 48 336
Texture Mapping Units 16 56
Render Output Units 8 32
Bus Type DDR3 GDDR5
Bus Width 128-bit 256-bit
Fab Process 40 nm 40 nm
Transistors 486 million 1950 million
Bus PCIe 2.0 PCIe 2.0 x16
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of megabytes per second) that can be transferred across the external memory interface in a second. The number is worked out by multiplying the card's interface width by the speed of its memory. If it uses DDR type RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This number is calculated by multiplying the total texture units by the core clock speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

GeForce GT 315

GeForce GTX 560

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti-Spam by WP-SpamShield


[X]
[X]