Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 315 vs GeForce GTX 560

Intro

The GeForce GT 315 makes use of a 40 nm design. nVidia has set the core speed at 625 MHz. The DDR3 RAM runs at a frequency of 790 MHz on this particular card. It features 48 SPUs along with 16 TAUs and 8 ROPs.

Compare that to the GeForce GTX 560, which comes with a clock frequency of 810 MHz and a GDDR5 memory frequency of 1001 MHz. It also makes use of a 256-bit bus, and makes use of a 40 nm design. It features 336 SPUs, 56 Texture Address Units, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 315 52 Watts
GeForce GTX 560 150 Watts
Difference: 98 Watts (188%)

Memory Bandwidth

The GeForce GTX 560 should theoretically be quite a bit faster than the GeForce GT 315 overall. (explain)

GeForce GTX 560 128128 MB/sec
GeForce GT 315 25280 MB/sec
Difference: 102848 (407%)

Texel Rate

The GeForce GTX 560 should be quite a bit (approximately 354%) faster with regards to texture filtering than the GeForce GT 315. (explain)

GeForce GTX 560 45360 Mtexels/sec
GeForce GT 315 10000 Mtexels/sec
Difference: 35360 (354%)

Pixel Rate

The GeForce GTX 560 will be a lot (about 418%) better at FSAA than the GeForce GT 315, and also will be capable of handling higher screen resolutions while still performing well. (explain)

GeForce GTX 560 25920 Mpixels/sec
GeForce GT 315 5000 Mpixels/sec
Difference: 20920 (418%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 315

Amazon.com

GeForce GTX 560

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 315 GeForce GTX 560
Manufacturer nVidia nVidia
Year November 2009 May 2011
Code Name GT216 GF114
Fab Process 40 nm 40 nm
Bus PCIe 2.0 PCIe 2.0 x16
Memory 512 MB 1024 MB
Core Speed 625 MHz 810 MHz
Shader Speed 1360 MHz 1600 MHz
Memory Speed 790 MHz (1580 MHz effective) 1001 MHz (4004 MHz effective)
Unified Shaders 48 336
Texture Mapping Units 16 56
Render Output Units 8 32
Bus Type DDR3 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1
Power (Max TDP) 52 watts 150 watts
Shader Model 4.1 5.0
Bandwidth 25280 MB/sec 128128 MB/sec
Texel Rate 10000 Mtexels/sec 45360 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 25920 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in MB per second) that can be transferred over the external memory interface in a second. The number is calculated by multiplying the interface width by its memory clock speed. If the card has DDR RAM, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This number is worked out by multiplying the total number of texture units by the core speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly record to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree