Compare any two graphics cards:
VS

GeForce GT 315 vs GeForce GTX 560

Intro

The GeForce GT 315 has a clock speed of 625 MHz and a DDR3 memory frequency of 790 MHz. It also uses a 128-bit memory bus, and makes use of a 40 nm design. It is made up of 48 SPUs, 16 TAUs, and 8 Raster Operation Units.

Compare all of that to the GeForce GTX 560, which features a GPU core clock speed of 810 MHz, and 1024 MB of GDDR5 RAM running at 1001 MHz through a 256-bit bus. It also is made up of 336 SPUs, 56 Texture Address Units, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 315 52 Watts
GeForce GTX 560 150 Watts
Difference: 98 Watts (188%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 560 should perform a lot faster than the GeForce GT 315 overall. (explain)

GeForce GTX 560 128128 MB/sec
GeForce GT 315 25280 MB/sec
Difference: 102848 (407%)

Texel Rate

The GeForce GTX 560 should be a lot (approximately 354%) faster with regards to anisotropic filtering than the GeForce GT 315. (explain)

GeForce GTX 560 45360 Mtexels/sec
GeForce GT 315 10000 Mtexels/sec
Difference: 35360 (354%)

Pixel Rate

The GeForce GTX 560 is quite a bit (about 418%) better at FSAA than the GeForce GT 315, and capable of handling higher screen resolutions while still performing well. (explain)

GeForce GTX 560 25920 Mpixels/sec
GeForce GT 315 5000 Mpixels/sec
Difference: 20920 (418%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 315

Amazon.com

GeForce GTX 560

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 315 GeForce GTX 560
Manufacturer nVidia nVidia
Year November 2009 May 2011
Code Name GT216 GF114
Fab Process 40 nm 40 nm
Bus PCIe 2.0 PCIe 2.0 x16
Memory 512 MB 1024 MB
Core Speed 625 MHz 810 MHz
Shader Speed 1360 MHz 1600 MHz
Memory Speed 1580 MHz 4004 MHz
Unified Shaders 48 336
Texture Mapping Units 16 56
Render Output Units 8 32
Bus Type DDR3 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1
Power (Max TDP) 52 watts 150 watts
Shader Model 4.1 5.0
Bandwidth 25280 MB/sec 128128 MB/sec
Texel Rate 10000 Mtexels/sec 45360 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 25920 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of MB per second) that can be moved past the external memory interface in one second. It's worked out by multiplying the card's bus width by its memory clock speed. If the card has DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total amount of texture units by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing