Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 315 vs GeForce GTX 560

Intro

The GeForce GT 315 makes use of a 40 nm design. nVidia has clocked the core frequency at 625 MHz. The DDR3 memory is set to run at a frequency of 790 MHz on this specific card. It features 48 SPUs as well as 16 Texture Address Units and 8 ROPs.

Compare that to the GeForce GTX 560, which makes use of a 40 nm design. nVidia has clocked the core frequency at 810 MHz. The GDDR5 RAM runs at a frequency of 1001 MHz on this model. It features 336 SPUs as well as 56 Texture Address Units and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 315 52 Watts
GeForce GTX 560 150 Watts
Difference: 98 Watts (188%)

Memory Bandwidth

Performance-wise, the GeForce GTX 560 should in theory be a lot superior to the GeForce GT 315 in general. (explain)

GeForce GTX 560 128128 MB/sec
GeForce GT 315 25280 MB/sec
Difference: 102848 (407%)

Texel Rate

The GeForce GTX 560 is much (more or less 354%) better at texture filtering than the GeForce GT 315. (explain)

GeForce GTX 560 45360 Mtexels/sec
GeForce GT 315 10000 Mtexels/sec
Difference: 35360 (354%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX 560 is a better choice, by far. (explain)

GeForce GTX 560 25920 Mpixels/sec
GeForce GT 315 5000 Mpixels/sec
Difference: 20920 (418%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 315

Amazon.com

GeForce GTX 560

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 315 GeForce GTX 560
Manufacturer nVidia nVidia
Year November 2009 May 2011
Code Name GT216 GF114
Memory 512 MB 1024 MB
Core Speed 625 MHz 810 MHz
Memory Speed 1580 MHz 4004 MHz
Power (Max TDP) 52 watts 150 watts
Bandwidth 25280 MB/sec 128128 MB/sec
Texel Rate 10000 Mtexels/sec 45360 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 25920 Mpixels/sec
Unified Shaders 48 336
Texture Mapping Units 16 56
Render Output Units 8 32
Bus Type DDR3 GDDR5
Bus Width 128-bit 256-bit
Fab Process 40 nm 40 nm
Transistors 486 million 1950 million
Bus PCIe 2.0 PCIe 2.0 x16
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1

Memory Bandwidth: Bandwidth is the max amount of data (in units of megabytes per second) that can be transported over the external memory interface within a second. The number is worked out by multiplying the interface width by its memory clock speed. If the card has DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This number is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]